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1 Exercise (realization, identification of autonomous
systems)

Assume that s series of output data from an autonomous dynamic system is
known and given by

y0 = 1, y1 = 0.9, y2 = 0.81, y3 = 0.729, y4 = 0.6561, (1)

An autonomous dynamic system is only driven by initial states, x0, different
from zero. We are assuming that the system can be described by a linearized
autonomous state space model of unknown order, i.e.,

xk+1 = Axk, (2)

yk = Dxk, (3)

where the initial state vector is unknown and different from zero, i.e. x0 6= 0,
the system matrices A and D are also unknown.
We have the following matrix equations

Yk|L = OLXk|1, (4)

Yk+1|L = OLAXk|1 (5)

where we for simplicity of notation often write Xk|1 = Xk. The Hankel matrix
equations Xk, Yk|L and Yk+1|L are illustrated in the tasks below.
We will in this exercise compute (or estimate) the the system matrices A and
D and the initial state vector, x0, from known output data observations of the
system.

a) Use the data in Eq. (1) and the matrix Eqs. (4)- (5) with k = 0 and L = 2.
Show that

Y0|2 = O2X0, (6)

where

Y0|2 =

[
y0 y1 y2
y1 y2 y3

]
, O2 =

[
D
DA

]
, X0 =

[
x0 x1 x2

]
.

b) Find a Singular Value decomposition (SVD) of the data matrix Y0|2, i.e,
find a decomposition such that

Y0|2 = USV T .

c) Find an expression for the (extended) observability matrix O2 and the state
matrix X0 from the results in step b) above.

How can you find the system matrix D and the initial state vector x0
from the matrices O2 and X0?
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d) Show that

Y1|2 = O2AX0, (7)

where

Y1|2 =

[
y1 y2 y3
y2 y3 y4

]
, (8)

and O2 and X0 is as defined above.

e) Find an expression for the transition matrix A from the relationship in step
d) above and the matrices O2 and X0 as found in step c).

f) You should now have found a complete model for the system, i.e. the model
matrices A, D and the initial state x0 should at this stage be known.
Simulate the model and compare the model outputs with the observed
known outputs which was the starting point for the computations.

g) To the end we will show some relations between the data Hankel matrices
Y0|2 and Y1|2.

Take equations (6) and (7) as the starting point and show that

Y1|2 =

Ã︷ ︸︸ ︷
O2A(OT

2 O2)
−1OT

2 Y0|2, (9)

and

Y1|2 = Y0|2X
T
0 (X0X

T
0 )−1AX0. (10)

Tips: a solution proposal is implemented as a MATLAB script, losn oppg1.m.
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Solution proposal: Exercise 1

% losn_oppg1.m

% Loesningsforslag til oppgave 1

% genererer y0, y1, y2, y3, y4

As=0.9; Ds=1; xs0=1;

[y,x]=dsrsim(As,0,Ds,0,zeros(5,1),xs0);

% elternativ: skriv inn dataene gitt i oppgaveteksten.

%%%%%%% Loesning

m=1; % antall y variable

disp(’Hankel matrisene’)

Y02=[y(1) y(2) y(3) % Hankelmatrise for beregning av n, O_2 og X0

y(2) y(3) y(4)]

Y12=[y(2) y(3) y(4) % Shiftet Hankelmatrise for beregning av A.

y(3) y(4) y(5)]

disp(’b) Beregner SVD av Y_02’)

[U,S,V]=svd(Y02);

sv=diag(S)’ % Singulaerverdiene

n=1; % default value for dread.

n=dread(’Tast inn antall sing. verdier forskellig fra null:’,n) % Samme som n=rank(Y0)

U1=U(:,1:n); S1=S(1:n,1:n); V1=V(:,1:n);

disp(’c) beregner O_2 og X_0’)

O2=U1

X0=S1*V1’

disp(’e) beregner x0 D og A’)

x0=X0(:,1)

D=O2(1:m,:)

A=pinv(O2’*O2)*O2’*Y12*X0’*pinv(X0*X0’)

disp(’f) simulerer den identifiserte modellen’)

yd=dsrsim(A,0,D,0,zeros(5,1),x0)
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2 Exercise (state matrix equation for SID)

We will in this exercise derive a matrix equation which is of central importance
in Subspace system IDentification (SID) methods. Assume that the system is
described by a linear discrete time model (the kalman filter on innovation form)

xk+1 = Axk + Buk + Kεk, (11)

yk = Dxk + Euk + εk. (12)

Note that this Kalman filter is equivalent to the following alternative formula-
tion

xk+1 = Axk + Buk + Cek, (13)

yk = Dxk + Euk + Fek, (14)

where K = CF−1, εk = Fek, E(eke
T
k ) = Im, i.e., such that at E(εkε

T
k ) = FF T .

We will in this exercise assume that a series of input and output data observa-
tions, uk and yk ∀ k = 1, 2, . . . , N , are known.

a) Show that (13) and (14) (or (11) og (12)) can be written as an ESSM model
(se also Equation (1.17) in the Lecture notes),

yk|L = OLxk + Hd
Luk|L + Hs

Lek|L, (15)

where

yk|L =


yk
yk+1
...
yk+L−1

 , uk|L =


uk
uk+1
...
uk+L−1

 , ek|L =


ek
ek+1
...
ek+L−1

 . (16)

You can with advantage chose a prescribed parameter L, e.g. L = 3. Also
write down the structure on the matrices OL, Hd

L and Hs
L,

b) How can you from equation (15) compute the state vector xk? Assume that
yk, uk and ek, k ≥ 0 as well as the model are known.

c) Show that equation (15) can be written as a data matrix equation

Yk|L = OLXk + Hd
LUk|L + Hs

LEk|L, (17)

where

Xk =
[
xk xk+1 · · · xk+K−1

]
∈ Rn×K . (18)
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3 Exercise (realisation, FIR- and state space mod-
els)

Given a system described by the following finite number of impulse responses

h1 = 0.5, h2 = 0.45, h3 = 0.405, h4 = 0.3645, h5 = 0.32805. (19)

Note that these impulse responses may be parameters in a so called Finite
Impulse response (FIR) model of the form

yt = h5ut−5 + h4ut−4 + h3ut−3 + h2ut−2 + h1ut−1 + Eut. (20)

Note also that these impulse responses may be estimated by exciting the system
by a unit impulse response at time t = 0, i.e. by using the following input
experiment on the system

U =
[
u0 u1 u2 u3 u4 u5

]T
=
[

1 0 0 0 0 0
]T

. (21)

The outputs, yt, will in this case be identical to the impulse response parameters
in the system, i.e., we have the following

t = 0 ⇒ y0 = Eu0 = E,
t = 1 ⇒ y1 = h1u0 = h1,
t = 2 ⇒ y2 = h2u0 = h2,
t = 3 ⇒ y3 = h3u0 = h3,
t = 4 ⇒ y4 = h4u0 = h4,
t = 5 ⇒ y5 = h5u0 = h5.

(22)

We also assume that ut = 0 for t < 0. Note also that if we are describing the
system by a FIR model on incremental form, i.e. by expressing yt − yt−1 and
using (20) then we get a so called FIR step response model of the form

yt = yt−1 + h5∆ut−5 + h4∆ut−4 + h3∆ut−3 + h2∆ut−2 + h1∆ut−1 + E∆ut.(23)

Here ∆ut−1 = ut−1 − ut−1 and so on. We can in this case simply identify the
impulse responses be exiting the system input with a unit step response, i.e. by
using the following experiment

U =
[
u0 u1 u2 u3 u4 u5 u6

]T
=
[

0 1 1 1 1 1 1
]T

. (24)

We will in this exercise compute a state space model and the matrices (A,B,D)
for the system based on the known impulse responses.

a) Write down the Hankel matrix H1|L by using L = 2 and J = 3. Tips: se
Chapter 2.2.5 in the Lecture notes.

b) Find the system order, n.

c) Find the extended observability matrix, O2, and the extended controllability
matrix, C3, for the system. Use the SVD of the hankel matrix. Define
which realization you are choosing
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d) Find the system matrices B and D.

e) Write down the Hankel matrix H2|L and find the system transition matrix
A.

f) Check your results, i.e., check wether the computed model (A,B,D) is
reasonable, i.e., check wether h1 = D̂B̂, h2 = D̂ÂB̂, etc, where D̂, Â and
B̂ are the computed model matrices/parameters.
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Solution proposal: Exercise 3

% losn_oppg3.m

% LOESNING TIL OPPGAVE 3

% Modifisert 19/2-2000, DDIR

h1=0.5;

h2=0.45;

h3=0.405;

h4=0.3645;

h5= 0.32805;

[m,r]=size(h1); % Finner antall inganger r og antall utganger m.

disp(’a) Hankelmatrisen H12 =’)

H12=[h1 h2 h3 % a) Hankelmatrise for beregning av n, O2, C3, D og B.

h2 h3 h4]

disp(’Forslag til systemets orden: n=rank(H12)’)

n=rank(H12) % b) Systemets orden dim(x)=n.

disp(’Beregner SVD’)

[U,S,V]=svd(H12); % c) Finn O2 og C3.

disp(’Singulaerverdiene til hankelmatrisen H12 er:’)

s=diag(S)’

n=dread(’b) Spesifiser systemet orden n = ’,n);

if (n >= 3) ~= (n <= 1)

disp(’ Spesifiser systemets orden 1 <= n <= 2’);

end

U1=U(:,1:n);

S1=S(1:n,1:n);

V1=V(:,1:n);

disp(’c) Beregnet O2 og C3 er:’)

O2 = U1 % Velger internt balansert realisering.

C3 = S1*V1’

disp(’d) og e) Beregner A B og D’)

D=O2(1:m,1:n) % d) Finn systemmatrisene D og B.

B=C3(:,1:r)

H22=[h2 h3 h4;

h3 h4 h5]; % e) Finn systemmatrise A

A=pinv(O2’*O2)*O2’*H22*C3’*pinv(C3*C3’)
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%%% SJEKKER MODELLEN MOT IMPULSRESPONSENE %%%%%%

disp(’Trykk en tast og fortsett ...’)

pause

disp(’f) Sjekker modellen ved aa regne ut impulsresponser’)

h1_e=D*B % skal vaere lik oppgitt h1

h2_e=D*A*B % skal vaere lik oppgitt h2

h3_e=D*A^2*B % skal vaere lik oppgitt h3

h4_e=D*A^3*B % skal vaere lik oppgitt h4
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4 Exercise (ESSM, matrix equation for SID)

In connection with the subspace system identification method DSR a so called
Extended State Space Model (ESSM) is used. One advantage with the ESSM
is that the unknown state vector xk is not present in the equation. A part of
the identification problem is therefore simpified (the part for computing the B
and E matrices). We will in this exercise show how we can find an ESSM model
from a state space model and a polynomial model as the starting point.
Consider a system described by a state space model with the following matrices
and parameters

A =

[
0 1
0 a1

]
, B =

[
b0
b1 + a1b0

]
,

D =
[

1 0
]
, E = 0,

(25)

where the parameters are a1 = 0.8, b0 = 0.4 and b1 = 0.6.

a) Chose an identification horizon L = 3 and show that we can construct the
following ESSM model (se Chapter 1 in the Lecture notes)

yk+1|3︷ ︸︸ ︷ yk+1

yk+2

yk+3

 =

Ã3︷ ︸︸ ︷ 0 0.6098 0.4878
0 0.4878 0.3902
0 0.3902 0.3122


yk|3︷ ︸︸ ︷ yk
yk+1

yk+2

+

B̃3︷ ︸︸ ︷ −0.2927 −0.1951 0
0.3659 0.2439 0
0.2927 0.7951 0.4


uk|3︷ ︸︸ ︷ uk
uk+1

uk+2


This exercise can be solved by deriving the expressions for Ã3, B̃3 and
thereafter put into numerical values.

b) Find the eigenvalues of the system matrix A ?

c) Find the eigenvalues of the system matrix ÃL in the extended state space
model ?

d) Show that a state space model with the matrices as in (25) can be written
as a polynomial model given by

yk = a1yk−1 + b0uk−1 + b1uk−2. (26)

e) Show that (26) can be written as a ESSM given by

yk+1|3︷ ︸︸ ︷ yk+1

yk+2

yk+3

 =

Ã3︷ ︸︸ ︷ 0 1 0
0 0 1
0 0 a1


yk|3︷ ︸︸ ︷ yk
yk+1

yk+2

+

B̃3︷ ︸︸ ︷ 0 0 0
0 0 0
0 b1 b0


uk|3︷ ︸︸ ︷ uk
uk+1

uk+2


f) What is the eigenvalues of Ã3 in exercise e) above?
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5 Exercise (impulse responses, FIR and state space)

Given a system described by the linear state space model

xk+1 = Axk + Buk, (27)

yk = Dxk + Euk. (28)

a) Show that we can write

yk+1 = DAxk + DBuk + Euk+1, (29)

yk+2 = DA2xk + DABuk + DBuk+1 + Euk+2, (30)

yk+3 = DA3xk + DA2Buk + DABuk+1 + DBuk+2 + Euk+3, (31)

b) How can yk+M generally be expressed? Tips: show first that we can write

xk+M = AMxk + Cd
Muk|M , (32)

and thereafter from yk+M = Dxk+M + Euk+M we have

yk+M = DAMxk + DCd
Muk|M + Euk+M . (33)

c) Assume that A is stable and that At ≈ 0 for ”large” t > 0. Show that we
in this case can describe yt by a Finite Impulse Response (FIR) model

yt = DCd
Mut−M |M + Eut. (34)

Remark: there exists system matrices where At = 0 even for small t, e.g.

for A =

[
0 1
0 0

]
we have that A2 = 0. This matrix is called nilpotent

and it rises up e.g. when modelling transport delay systems. We will also
always have that limt→∞At = 0 when A is stable and all eigenvalues are
located inside the unit circle in the complex plane.

d) Compare the model with the FIR model in Exercise 3 and find the relation-
ship between the impulse responses and the state space model matrices.
Tips: find that h1 = DB, h2 = DAB, and so on.
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6 Exercise (Identification of refiner data using, DSR)

We will in this task use observed and recorded refiner process data from the
former Union Co. pulp and paper mill in Skien, Norway. We will concentrate
in finding the model and relationship between three input (manipulable control
variables) and two output variables which are measured and recorded from the
Thermo Mechanical Pulping (TMP) refiner. A TMP refiner is pressurized in a
casing. The pressure in the casing is approximately 4 [Bar].
The input time series variables are stored on the data file, utmp.dat, and the
output data time series on the file ytmp.dat, i.e.,

Data set 1: utmp.dat and ytmp.dat. (35)

The D-SR Toolbox for MATLAB function DSR is to be used for dynamic data
alalysis and modelling of the refiner. Download the toolbox and remember to
define the path to the file location.

a) Plot the variables which are stored in the data files. Mark the figures with
the symbols y1, u1 and so on. How many samples consists the data files
of? Some MATLAB functions which is useful are subplot, size and load,
etc.

b) Perform an analysis of the system order by using the dsr.m function. How
many states will you use ? It may be useful to do the steps c) and d)
below in order to find the best choice of system order.

c) Use the 1500 first samples in the data files for constructing the state space
model for the refiner. How many states are you using?

d) Validate the model by simulate it over all the N samples in the data files.
Compute the prediction error. The prediction error is a measure of the
difference between the real outputs yk and the predicted simulated outputs
ȳsk. You can compute the simulated outputs ȳsk by using the dsrsim.m
function. The predicted simulated error is computed as

V s
N =

1

N

N∑
k=1

(yk − ȳsk)2 (36)

e) Validate the model by comparing the optimal prediction with the real out-
puts. The optimal prediction is obtained by simulating the Kalman filer.
The complete Kalman filter is computed by the DSR method. Use the
dsropt.m function in order to compute the optimal prediction. Plot the
optimal predictions, ȳk, in the same figure as the real outputs, yk.

Note that a solution proposal for this task is partially implemented in the
MATLAB script, tmp demo1.m.
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7 Exercise (Identification of refiner data using, DSR)

We will in this task use observed and recorded refiner process data from the
former Union Co. pulp and paper mill in Skien, Norway. We will concentrate
in finding the model and relationship between three input (manipulable control
variables) and two output variables which are measured and recorded from the
Thermo Mechanical Pulping (TMP) refiner. The input variables is in this task
setpoints to local controllers in the process. The output variables are the refiner
power and the consistency in the blow line pipe from the refiner casing.
The input and output data time series are stored on the files

Data set 2: utmp2.dat and ytmp2.dat. (37)

The subspace system identification algorithm DSR is to be used for data anal-
ysis and modelling of the refiner data.

a) Plot the variables which are stored in the data files. Mark the figures with
the symbols y1, u1 and so on. How many samples N consists the data
files of? Some MATLAB functions which is useful are subplot, size and
load, etc.

b) Those time series have trends, i.e. they vary around some non zero station-
ary points. It is often common to eliminate those trends by centering the
time series. Centering means to subtract the mean of the time series from
the actual time series. However, for dynamic systems it may often be
better to remove trends by subtracting the mean of, say, the first 25− 30
first samples of the time series.

Remove such a trend from the time series and plot the variables.

c) Perform an analysis of the system order by using the dsr.m function. How
many states will you use ? It may be useful to do the steps c) and d)
below in order to find the best choice of system order.

d) Use the 1500 first samples in the data files for constructing the state space
model for the refiner. How many states are you using?

e) Validate the model by simulate it over all the N samples in the data files.
Compute the prediction error. The prediction error is a measure of the
difference between the real outputs yk and the predicted simulated outputs
ȳsk. You can compute the simulated outputs ȳsk by using the dsrsim.m
function. The predicted simulated error is computed as

V s
N =

1

N

N∑
k=1

(yk − ȳsk)2 (38)

f) Validate the model by comparing the optimal prediction with the real out-
puts. The optimal prediction is obtained by simulating the Kalman filer.
The complete Kalman filter is computed by the DSR method. Use the
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dsropt.m function in order to compute the optimal prediction. Plot the
optimal predictions, ȳk, in the same figure as the real outputs, yk. The
prediction erreor for one output may be computed as follows

VN =
1

N

N∑
k=1

(yk − ȳk)2 (39)

where ȳk is the optimal prediction from the Kalman filter.

g) Try to tune a PI controller. Use the water set point, u2, as the manipulable
control variable and the consistency, y2, as the output variable to be
controlled.

Note that a solution proposal is partially implemented in the MATLAB script,
tmp demo2.m.
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8 Exercise (regression, PCA and PCR)

a) The Principal Component Analysis (PCA) and Principal Comonent Re-
gression (PCR) methods are simple and robust implemented through a
Singular Value decomosition (SVD) of the input, X, data matrix. Write
a MATLAB function which implements both PCA and PCR in the same
script. The first line in the script file may lock as follows

[B,U1, S1, V 1, T, P ] = mypcr(Y,X, a)

where 1 ≤ a ≤ r is the number of principal components specified by the
user. Remember to write comment sentences in the script as a documen-
tation of the script and variables etc.

b) When writing software code for an numerical algorithm it make sense to use
a set of test data with known solution in order to test the implementation.
use the following test data with solution.

X =



1 1.1 0
1 1.1 0
2 0.8 1
2 0.8 1
1 0.9 0.1
1 0.9 0.1

 , Y =



0.86 0.81
0.86 0.81
1.78 1.04
1.78 1.04
0.83 0.71
0.83 0.71

 (40)

The data matrices Y and X are stored on the ascii files xtest.dat and
ytest.dat. Note that we have r = 3 variables in the input data matrix,
X, and m = 2 variables in the output data matrix, Y .

1. With a = 3 components (independent X variables) we got the solu-
tion

B3 =

 0.2 0.04
0.6 0.7
0.9 0.4

 . (41)

Note that this solution is identical to the Ordinary Least squares
(OLS) solution, because a = r.

2. With a = 2 components (independent X variables) we got the solu-
tion

B2 =

 0.6321 0.3633
0.1970 0.3985
0.3564 −0.0067

 . (42)

3. With a = 1 components (independent X variables) we got the solu-
tion

B1 =

 0.5834 0.4063
0.3622 0.2523
0.1952 0.1360

 . (43)
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Check if you got the same solution by running your own PCA and PCR
implementation. Note that a solution proposal is implemented in the
MATLAB script function mypcr.m.
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9 Exercise (DSR, PCR and system identification of
dynamic systems)

In this exercise input and output time series data are given from a process.
Those data are stored on the files yov5.dat (output data) and uov5.dat (input
data).

a)

Use the MATLAB script mypcr.m which was written in Exercise 8 in
order to identify a steady state model for the process.

b) Use the same data in order to identify a dynamic state space model for the
process by using the DSR method. Comment your choice of system order.
Compute the steady state gain for the process by using the identified state
space model.

c) We have in step a) tried to identify the steady state gain in a dynamic
system by using a least squares techniqueas PCR. Compare the steady
state gain which was found from the identified dynamic model in step b)
with the result in step a). Comment the results.

d) Assume that the system outputs are to be controlled by single input and
single output (SISO) PID controllers. Use RGA analysis in order to find
rules for pairing of input and output variables.

1. based on the steady state gain found from the identified dynamic
model in step b).

2. based on the steady state gain identified by using PCR as in step a).

e) Compare the models by locking at the variance matrices of the simulated
error. Tips: the variance matrix of the simulated error may be computed
as follows

V =
1

N − 1

N∑
k=1

(yk − ŷdk)(yk − ŷdk)T = (Y − Yd)T (Y − Yd)/(N − 1). (44)

A solution proposal for this exercise is presented in the MATLAB script, losn oppg8.m
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Solution proposal Exercise 9

% losn_oppg8.m

%

load yov5.dat

load uov5.dat

y=yov5; u=uov5;

[N,m]=size(y);

disp(’a) Beregner forsterkning vha PCR’)

hd_pcr=mypcr(y,u);

hd_pcr=hd_pcr’

disp(’b) Beregn modell vha DSR’)

[a,b,d,e,c,f,x0]=dsr(y,u,2);

n=length(a);

disp(’ Beregner forsterkning vha for DSR modell’)

hd_dsr=d*inv(eye(n)-a)*b+e

disp(’d) RGA analyse’)

disp(’RGA for DSR modell’)

rga_dsr=hd_dsr.*(inv(hd_dsr))’

disp(’RGA for PCR modell’)

rga_pcr=hd_pcr.*(inv(hd_pcr))’

yd_dsr=dsrsim(a,b,d,e,u,x0);

yd_pcr=hd_pcr*u’;

yd_pcr=yd_pcr’;

disp(’e) Variansmatrisen til simulert feil’)

pe_dsr=y-yd_dsr;

pe_pcr=y-yd_pcr;

V_dsr=pe_dsr’*pe_dsr/(N-1)

V_pcr=pe_pcr’*pe_pcr/(N-1)
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10 Exercise (Partial Least Squares (PLS), univariate
data)

The PLS algorithm can easily and simply be implemented trough a controlla-
bility matrix for the matrix pair (XTY,XTX), i.e.,

Ka =
[
XTY XTXXTY (XTX)2XTY · · · (XTX)a−1XTY

]
(45)

The PLS solution for B in a linear model Y = XB + E where Y and X are
known data matrices are given by

BPLS = Ka(KT
a X

TXKa)−1KT
a X

TY (46)

Write a MATLAB function in order to implement the PLS algorithm. The first
line in the script may lock as follows

BPLS = mypls(Y,X, a)

where 1 ≤ a ≤ r is the number of PLS components. Remember to write
comments in the file as a documentation of variables etc used in the script.
Test the algorithm and compare the results obtained in Exercise 8 and 9.
Remark: An PLS implementation by the direct use of Equations (45) and (46)
is not numerically stable. Se Chapter 17 and pages 298-303 for a numerically
stable implementation of the PLS algorithm.
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11 Exercise (SID of deterministic systems)

The background for this exercise is as follows. Given a system where an ex-
periment is performed on the system inputs. The known input and output
data

uk
yk

}
∀ k = 1, . . . , N (Known data vectors)

of the system are stored and saved in the data matrices U and Y , the input
experiments in U and the outputs in Y , in the commin way such that U ∈
RN×r and Y ∈ RN×m are known data matrices.
We want to identify a dynamic state space linearized model from the known
data matrices Y and U . are known data matrices.
We are assuming that the system can be represented by a linear discrete time
state space model of the form

xk+1 = Axk + Buk, (47)

yk = Dxk + Euk, (48)

where k is discrete time.
Two set of input and output data, from two different systems are generated
and given as follows.

System 1

U =



u1
u2
u3
u4
u5
u6
u7


=



−1
1
1
−1

1
−1
−1


, Y =



y1
y2
y3
y4
y5
y6
y7


=



1.0000
−1.5000
−0.9500

1.5450
−1.0095

1.4914
0.9423


(49)

System 2

U =



u1
u2
u3
u4
u5
u6
u7


=



−1
1
1
−1

1
−1
−1


, Y =



y1
y2
y3
y4
y5
y6
y7


=



1.1000
−3.1000
−0.8000

3.6500
−0.7850

3.0875
0.5607


(50)

The above data matrices are stored on the files u.dat, y1.dat and y2.dat.

21



Exercise questions

The exercise is best answered by both using pen and paper and the MATLAB
program on the computer for computations.

a) Write down the expressions for the matrices which is in the following matrix
equations

Yk+1|L = ÃLYk|L + B̃LUk|L+g (51)

and

Yk|L = OLXk + Hd
LUk|L+g−1 (52)

where we have specified k = 1, L = 2 and g = 1.

In particular, define the matrices U1|3, Y1|2 and Y2|2 which are needed in
the computations.

b) What is the meaning of the parameters L and g?

How many columns, K, is it in the data matrices U1|3, Y1|2 and Y2|2 when
all the known observations data are used?

c) Write down the expression and do the computations in MATLAB, for a
projection matrix U⊥1|3 with the following property.

U1|3U
⊥
1|3 = 0K×K (53)

Is there a demand for the number of columns, K, in the data matrix U1|3
in order for such a projection matrix to exists?

d) Multiply all terms from right in the matrix Equation (51) with the projec-
tion matrix defined in Step c). The result will be a matrix equation given
by

Z2|2 = ÃLZ1|2 (54)

Z1|2 = O2X̃1 (55)

Write down the formulas for the data matrices Z2|2, Z1|2 and X̃1. Perform
the computations within MATLAB.

e) Perform a Singular Value decomposition (SVD) of the data matrix Z1|2.
Find the system order, n, and the observability matrix, O2. Use an output
normal realization.

f) Find a formula for the computation of the system transition matrix, A,
expressed in terms of Z2|2 and the SVD from Step e). Also find the
system matrix D.

g) Find a formula for the computation of Ã2.
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h) Find a formula for the computation of the matrix B̃2.

i) Show how we can find the system matrices B and E.

j) Assume that g = 0. This means that E = 0 and that the system is proper.
Write down the expressions for the matrices in the ESSM model in Step
a) also for this case.

Tips: a solution proposal for this exercise is implemented in the MATLAB
script file losn oppg10.m.
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Solution proposal Exercise 11

% losn_oppg10.m

% Loesningsforslag til oppgave 10.

%%%%%%%%%%%%%%%%%%%%%% THE ACTUAL SYSTEM MATRICES %%%%%%%%%%%%%%%%%%%%%%%%%%%%

isys=1;

isys=dread(’Spesifiser system 1 eller 2 !’,isys);

if isys == 1 % 1st order system.

A=0.9; B=0.5; % Model for y1.dat

D=1; E=-1;

elseif isys == 2 % 2nd order system.

A=[1.5 1;-0.7 0]; B=[2;-1.3]; % Model for y2.dat

D=[1 0]; E=-1.1;

end

%%%%%%%%%%%%%%%%%%%%%% EXPERIMENT DESIGN %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

u=[-1;1;1;-1;1;-1;-1]; % Experiment design, N=7.

y=dsrsim(A,B,D,E,u); % Generate data.

m=1; r=1; % SISO system.

% Merk: last inn datamatrisene u.dat, y1.dat og y2.dat i stedet for

% simuleringen over.

%%%%%%%%%%%%%%%%%%%%% USER SPECIFIED PARAMETERS %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

L=2; % The # of block rows.

g=1; % The model structure parameter.

%%%%%%%%%%%%%%%%%%%%%% COMPUTE STATE SPACE MODEL MATRICES %%%%%%%%%%%%%%%%%%%%

if g==1 % Ordering the input and output data.

U1 = [u(1) u(2) u(3) u(4) u(5) % The # of rows is L+g=L+1=3.

u(2) u(3) u(4) u(5) u(6)

u(3) u(4) u(5) u(6) u(7)];

elseif g==0

U1 = [u(1) u(2) u(3) u(4) u(5) % The # of roes is L+g=L=2.

u(2) u(3) u(4) u(5) u(6)];

end

Y1 = [y(1) y(2) y(3) y(4) y(5)

y(2) y(3) y(4) y(5) y(6)];

Y2= [y(2) y(3) y(4) y(5) y(6)

y(3) y(4) y(5) y(6) y(7)];

[rowsU1,K]=size(U1);
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disp(’a) Hankelmatrisene er:’)

U1, Y1, Y2

disp(’c) En projeksjonsmatrise slik at U1*Up=0 er’)

Up = eye(K) - U1’*inv(U1*U1’)*U1 % Define projection matrix

% so that U1*Up = 0.

Z2=Y2*Up; % Compute matrices in Z2 = At*Z1.

Z1=Y1*Up;

[U,S,V] = svd(Z1); % Find system order etc.

disp(’Singulaerverdiene til Z1 er’)

sv=diag(S(1:L*m,1:L*m))’

n=0; % Try to find order automatically.

for i=1:L*m; if sv(i)/sv(1) > 1.0e-7; n=n+1; end; end

n=dread(’Spesifiser systemets orden ?’,n);

disp(’e) Observerbarhetsmatrisen er’)

O=U(:,1:n), S1=S(1:n,1:n); V1=V(:,1:n); % Find observability matrix etc.

disp(’f) Systemmatrisene A og D er’)

d=O(1:m,:) % Find D and A.

a=O’*Z2*V1*inv(S1)

disp(’g) Utvidet systemmatrise’)

At=O*a*O’ % Find Atilde and Btilde

disp(’f) Utvidet systemmatrise’)

Bt=(Y2-At*Y1)*U1’*pinv(U1*U1’)

if g==1 % Find E and B.

col3=Bt(:,3); col2=Bt(:,2); col1=Bt(:,1);

h2=col3; % Note h1=[0;E]

h1=col2+At*h2; % h2=[E;DB]

ob=col1+At*h1; % ob=[DB;DAB]

e=h2(2);

else

col2=Bt(:,2); col1=Bt(:,1)

h1=col2; % h2=[E;DB]

ob=col1+At*h1; % ob=[DB;DAB]

e=0;

end
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disp(’i) E og B matrisen er’)

e

b=O’*ob
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12 Exercise (SID of deterministic systems, the shift-
invariance technique)

We will in this exercise use the same numerical values and observed data as in
Exercise 11. We will use the so called ”shift invariance technique” in order to
estimate the system order, n, the extended observability matrix OL+1, and the
system matrices A and D. This is an alternative method to that in Exercise
11.

a) Write down expressions for the matrices in the matrix equation

Yk|L+1 = OL+1Xk + Hd
L+1Uk|L+g (56)

where the parameters k = 1, L = 2 g = 1 are specified.

In particular, define the data Hankel matrices U1|3 and Y1|3 within MAT-
LAB, which are needed for the computations.

b) Multiply all terms from right in the matrix Equation (51) with the projec-
tion matrix U⊥L+1. You will then obtain a matrix equation of the form

Zk|L+1 = OL+1X̃k (57)

Write down formulas for the data matrices Zk|L+1 and X̃k. Perform the
computations within MATLAB.

c) Perform a Singular Value decomposition (SVD) of the data matrix ZL+1

and find the system order, n, the extended observability matrix OL+1,
and the system matrices A and D. You should obtain the same results as
in Exercise 11. The system matrices B and E can be found in the same
way as in Exercise 11.
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13 Exercise (SID of deterministic and stochastic sys-
tems)

This exercise is an extension of Exercise 11. The point with the exercise is
to make a MATLAB function which can be used for the identification of state
space models from data from combined deterministic and stochastic systems.
The MATLAB function which was written in Exercise 11 can in general only
be used for deterministic noise free systems. This exercise is an extension in
such a way that the resulting method works for systems with both process and
measurements noise.
We assume that the system may be described by the following State Space
Model (SSM) model

xk+1 = Axk + Buk + Cek (58)

yk = Dxk + Euk + Fek (59)

where the integer k ≥ 0 is discrete-time, x ∈ Rn is the state vector with initial
value x0, y ∈ Rm is the system output, u ∈ Rr is the system input, e ∈ Rm

is an unknown innovations process of white noise, assumed to be covariance
stationary, with zero mean and covariance matrix E(eke

T
k ) = I. The constant

matrices in the SSM are of appropriate dimensions. A is the state transition
matrix, B is the external input matrix, D is the output matrix and E is the
direct control input to output (feed-through) matrix. C and F is related to the
Kalman gain matrix as K = CF−1.
We assume the following input and output data to be known

uk
yk

}
∀ k = 0, . . . , N − 1 (Known data vectors)

Exercise questions

The exercise is best answered by both using pen and paper and the MATLAB
program on the computer for computations.

a) Given the extended state space model (ESSM)

YJ+1|L = ÃLYJ |L + B̃LUJ |L+g + C̃LEJ |L+1, (60)

and the state matrix equation

YJ |L = OLXJ + Hd
LUJ |L+g−1 + Hs

LEJ |L. (61)

The data matrices which are to be used to remove noise from the future
data, i.e., to remove the term C̃LEJ |L+1 from Equations (60) and (61),
are given by the past data matrices

Y0|J and U0|J .

Specify J = 2, L = 2 and g = 1. Write down expressions for the matrices
in the above equations. In particular, define the data matrices Y0|J , U0|J ,
UJ |L+g, YJ |L and YJ+1|L in MATLAB. These data matrices are needed in
the computations.
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b) What are the meaning of the parameters J , L and g?

c) Derive the following equations

ZJ+1|L = ÃLZJ |L (62)

Zd
J+1|L = ÃLZ

d
J |L + B̃LUJ |L+g (63)

i.e., find formulas for the projected data matrices ZJ+1|L, ZJ |L, Zd
J+1|L

and Zd
J |L, and do the computations in MATLAB

d) Perform an Singular Value Decomposition (SVD) of the projected data
matrix ZJ |L, and find the system order, n, and the extended observability
matrix, OL. Use the output normal realization choice.

e) Write down a formula for the determination of the system transition matrix
A in terms of ZJ+1|L and the SVD in Step e) above. Also find the system
matrix D.

f) Find a formula for computing the matrix, ÃL.

g) Find a formula for computing the matrix, B̃L.

h) Show how to find the system matrices, B and E.

i) Find an expression for the initial state vector, x0. Tips: when deriving the
extended state space model such an expression is used.

j) Use the time series data from Exercise 6, i.e., the data ytmp.dat and
utmp.dat from Union Co., and find a state space model from the data.
Do a validation of the model.

Remarks: It is suggested that during the work with this exercise you should
have written a MATLAB script function with a similar syntacs as follows:

[A,B,D,E, x0] = my sub(Y,U, L, g, J);

Remarks: In connection with system identification of combined deterministic
and stochastic systems is is of central importance with a correct and numer-
ically stable and robust implementation of the identification algorithm. The
implementations, DSR.M and DSR E.M in the D-SR Toolbox for MATLAB
are numerically stable and robust implementations of the DSR method. The
methods can be used in order to identify the complete Kalman filter model
including initial states for both open and closed loop systems. Those imple-
mentations have shown to work superior compared to other implementations
and algorithm.
The syntax is:

[A,B,D,E,C, F, x0] = dsr(Y,U, L, g, J); (64)

[A,B,D,E,K, F, x0] = dsr e(Y, U, L, g, J, n); (65)
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14 Exercise (Prediction error methods and other SID
methods)

The data series on the files yov8.dat and uov8.dat are to be used in this
exercise. The data is from a SISO system influenced by stochastic disturbances.
The time series from Exercise ??, i.e., uov5.dat and yov5.dat are also to be
used.
One point with this exercise is to illustrate the use of the D-SR Toolbox and
the System Identification Toolbox (ident) fir MATLAB. We will also compare
different model structures and methods for system identification.
The exercise is best solved by both using pen and paper as well as the MATLAB
computer software. Write your own MATLAB m-script file for the different
subtasks.

Exercise part 1

Use the time series data (yov8.dat,uov8.dat) and (uov5.dat,yov5.dat).

a) Use the DSR algorithm in order to decide the dynamic order of the system

b) Use the DSR algorithm, i.e. the D-SR Toolbox function dsr.m, in order
to identify a dynamic state space model for the process. Compute the
steady state gain, zeroes, simulated error criterion and the prediction
error criterion for the model.

c) Use the IDENT function n4sid.m in order to identify a state space model
for the process. Compute the steady state gain, zeroes, simulated error
criterion and the prediction error criterion for the model.

Exercise part 2

a) Use PCA and PCR in order to identify a steady state model for the process.
Compute the steady state gain and the prediction error criterion for the
model.

b) Assume that the system can be described by a pure ARX model. use the
ident Toolbox function arx.m in order to identify a model for the system.
Use the function th2ss.m in order to transform the model to a state space
model. Compute the steady state gain, zeroes, and the prediction error
criterion for the model.

c) Assume that the system can be described by an ARMAX model. Use
the ident Toolbox function armax.m in order to identify a model for the
process. Use the function th2ss.m in order to transform the model to
a state space model. Compute the steady state gain, zeroes, and the
prediction error criterion for the model.
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d) Use the ident Toolbox function pem.m in order to identify a model for
the process. Use the function th2ss.m in order to transform the model
to a state space model. Compute the steady state gain, zeroes, and the
prediction error criterion for the model.

The results from the different system identification methods can with advantage
be presented in a table. Answer the following questions. Is the system/process
minimum-phase or non-minimum-phase ? Which model is in your eyes the best
model? Is there great differences between the different models?
Tips: a solution proposal for this exercise is implemented in the m-file losn oppg12.m.
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Solution proposal to exercise 14

% losn_oppg12.m

% L O E S N I N G S F O R S L A G T I L OPPGAVE 12 %%%%%%%%%%%%%%

%

load uov8.dat

load yov8.dat

u=uov8; y=yov8;

clear uov8 yov8

[N,r]=size(u);

%a)%%%%%%%%%%%%%%%%%%%%%%% D S R %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

for L=1:5

[a,b,d,e,c,f,x0]=dsr(y,u,L,1,L,1,1);

a_dsr(L,1)=a; b_dsr(L,1)=d*b; d_dsr(L,1)=1; e_dsr(L,1)=e;

c_dsr(L,1)=d*c*inv(f); x0_dsr(L,1)=x0;

hd_dsr(L,1)=ddcgain(a,b,d,e);

end

ym_dsr=dlsim(a_dsr(1),b_dsr(1),d_dsr(1),e_dsr(1),u,x0_dsr(1));

%b)%%%%%%%%%%%%%%%%%%%%%%% P C R %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

hd=y’*u*pinv(u’*u); % Least Squares

ym_pcr = hd*u;

%c)%%%%%%%%%%%%%%%%%%%%%%% A R X %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

th_arx=arx([y u],[1,2,0]);

[a_arx,b_arx,d_arx,e_arx,c_arx]=th2ss(th_arx);

ym_arx=dlsim(a_arx,b_arx,d_arx,e_arx,u);

hd_arx=ddcgain(a_arx,b_arx,d_arx,e_arx);

%d)%%%%%%%%%%%%%%%%%%%%%%% A R M A X %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

th_armax=armax([y u],[1,2,1,0]);

[a_armax,b_armax,d_armax,e_armax,c_armax]=th2ss(th_armax);

ym_armax=dlsim(a_armax,b_armax,d_armax,e_armax,u);

hd_armax=ddcgain(a_armax,b_armax,d_armax,e_armax);

%e)%%%%%%%%%%%%%%%%%%%%%%% P E M %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

ms=canform(1,1,[1,1,1]); % Modellstructur

th0=ms2th(ms); % Transform til theta form.

th_pem=pem([y u],th0); % Id. parametre.

[a_pem,b_pem,d_pem,e_pem,c_pem,x0_pem]=th2ss(th_pem);

ym_pem=dlsim(a_pem,b_pem,d_pem,e_pem,u,x0_pem);

hd_pem=ddcgain(a_pem,b_pem,d_pem,e_pem);

% or as follows, for siso systems.

% po=[na nb nc nd nf nk]=[1 2 1 0 0 0]; th=pem([y u],po);
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%%%%%%%%%%%%%%%%%%%%%%%%%% O E %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

th_oe=oe([y u],[2,1,0]);

[a_oe,b_oe,d_oe,e_oe,c_oe,x0_oe]=th2ss(th_oe);

hd_oe=ddcgain(a_oe,b_oe,d_oe,e_oe);

% KOMMENTARER

% -DSR OG PEM er generelle metoder, dvs. hele Kalman-filteret estimeres.

% -ARMAX identifiserer ogsaa et fullstendig Kalman-filter, men denne

% virker bare for SISO systemer. For et SISO system kan ARMAX med fordel

% benyttes i stedet for PEM.

% -ARX og OE er kan ikke estimere hele Kalman-filteret.

% -Parametrene i en ARX modell kan identifiseres direkte vha minste

% kvadraters metode.
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15 Exercise (Using PEM, ARMAX, OE, ARX and
DSR)

The time series data on the files, yov9.dat and uov9.dat, are to be used
in this exercise. The time series is from a SISO system excited by stochastic
disturbances and generated by a state space model of the form

xk+1 =

[
1.5 1
−0.7 0

]
xk +

[
2
−1.3

]
uk +

[
0.5
0.3

]
ek (66)

yk =
[

1 0
]
xk − uk + ek (67)

where the initial state vector is given by

xk=1 =

[
0
0

]
(68)

The input experiment performed on the system is given by a sum of two sinusoid
systems, i.e.,

uk = sin((k − 1)/5) + sin((k − 1)/10) ∀ k = 1, · · · , 1000

The input time series can be generated in MATLAB as follows

>> t=1:1000;

>> t=t’;

>> U=sin((t-1)/5)+sin((t-1)/10);

The noise process ek is white with zero mean and generated in MATLAB by
the commands given by

>> randn(’seed’,0)

>> e=randn(1000,1);

One goal with the exercise is to give experience in using the prediction error
methods for system identification, PEM, ARMAX, OE, and ARX, within the
IDENT Toolbox. The subspace method DSR is also to be used. The exercise is
best solved by both using pen and paper and the MATLAB computer program.
The reader is recommended to write their own m-file script for the solutions.

Exercise 15 part 1

We will first analyze the underlying system by first compute some characteristic
parameters of the system. Compute the following:

• Compute the eigenvalues of the system given by (66).

• Compute the steady state gain hd from uk to yk.

• Compute the steady state gain hs from ek to yk.

• Simulate the above system by e.g. using DSRSIM.m, DLSIM.M or using a
for loop. Compare the outputs with the data on the given files yov9.dat
and uov9.dat.
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Exercise 15 part 2

a) Use the DSR method in order to identify a state space dynamic model for
the process. Compute the steady state gain hd from uk to yk, steady state
gain hs from ek to yk and the prediction error criterion for the model.

b) Use PCA and PCR in order to identify a steady state model for the process.
Compute the steady state gain and the prediction error criterion for the
model. Comment upon the number of principal components used and the
connection with the ordinary least squares (OLS) method.

c) Assume that the system can be described by a pure ARX model. Specify
the polynomials A(q) and B(q) the order na and nb of the polynomials.
Use the IDENT Toolbox function arx.m in order to identify a model for
the system. Use the function th2ss.m to transform the model to a state
space model. Compute the steady state gain and the prediction error
criterion for the model.

d) Assume that the system can be described by an ARMAX model. Specify
the polynomials A(q), B(q) and C(q), and its orders na, nb and nc. Use
the IDENT Toolbox function armax.m in order to identify a model for the
system. Use the function th2ss.m to transform the model to a state space
model. Compute the steady state gain and the prediction error criterion
for the model.

e) Assume that the system can be described by an Output Error (OE) model.
Specify the order and the polynomials which describes the OE model. Use
the IDENT Toolbox function oe.m in order to identify a model for the
system. Use the function th2ss.m to transform the model to a state space
model. Compute the steady state gain and the prediction error criterion
for the model.

f) Use the IDENT Toolbox function pem.m in order to estimate a model for
the system. Specify the orders of the polynomials which describes the
model. Compute the steady state gains hd and hs and the prediction
error criterion.

Exercise 15 part 3

Compare the different models obtained in part 1 with respect to eigenvalues,
steady state gain, prediction error criterion. the results can with advantage be
presented in a table.
Which methods is correct to use on the system given by (66) and (67).
A solution proposal to Exercise 15 is given in the MATLAB m-file script,
losn oppg13.m.
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Solution proposal for Exercise 15

% losn_oppg13.m

% Solution to exercise 9, System Identification

% Written by David Di Ruscio, 17/11-97

%%% GIVEN A STATE SPACE MODEL DESCRIBED BY %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% x_k+1 = A x_k + B u_k + C v_k

% y_k = D x_k + E u_k + F v_k

% where

a1=-1.5; a0=0.7; b1=2; b0=-1.3;

A=[-a1,1;-a0,0]; B=[b1;b0]; C=[0.5;0.3]; D=[1,0]; E=-1; F=1;

%%%%%%%%%%% GENERATE INPUT AND OUTPUT DATA %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

N=1000; u=utype(N,6); randn(’seed’,0); e=randn(N,1);

y=dlsim(A,[B C],D,[E F],[u e]);

% transfer function from u_k to y_k

% num=[E b1+a1*E b0+a0*E]; den=[1,a1,a0];

% th=arx([y u],[2,3,0]);

% [a,b,d,e,c]=th2ss(th);

[N,r]=size(u);

%%%%% IDENTIFY MODELS WITH DSR, PCR/LS, ARX, ARMAX, PEM AND OE %%%%%%%%%%%%%%%%

% Note: only DSR, ARMAX and PEM are general enough to identify the above model

%a)%%%%%%%%%%%%%%%%%%%%%%% D S R %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

L=3; [a_dsr,b_dsr,d_dsr,e_dsr,c_dsr,f_dsr,x0_dsr]=dsr(y,u,L,1,L,1,2);

hd_dsr=ddcgain(a_dsr,b_dsr,d_dsr,e_dsr);

hs_dsr=ddcgain(a_dsr,c_dsr,d_dsr,f_dsr);

ym_dsr=dlsim(a_dsr,b_dsr,d_dsr,e_dsr,u,x0_dsr);

%b)%%%%%%%%%%%%%%%%%%%%%%% P C R %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% assume model on the form y_k = Hd*u_k which gives normal eq. y’=Hd*u’

hd_pcr=y’*u*pinv(u’*u); % Least Squares=PCR with two components

ym_pcr = (hd_pcr*u’)’;

%c)%%%%%%%%%%%%%%%%%%%%%%% A R X %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

na=2; nb=3; nk=0;

th_arx=arx([y u],[na,nb,nk]);

[a_arx,b_arx,d_arx,e_arx,c_arx]=th2ss(th_arx);

ym_arx=dlsim(a_arx,b_arx,d_arx,e_arx,u);

hd_arx=ddcgain(a_arx,b_arx,d_arx,e_arx);

%d)%%%%%%%%%%%%%%%%%%%%%%% A R M A X %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

na=2; nb=3; nc=2; nk=0; th_armax=armax([y u],[na,nb,nc,nk]);
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[a_armax,b_armax,d_armax,e_armax,c_armax]=th2ss(th_armax);

ym_armax=dlsim(a_armax,b_armax,d_armax,e_armax,u);

hd_armax=ddcgain(a_armax,b_armax,d_armax,e_armax);

hs_armax=ddcgain(a_armax,c_armax,d_armax,1);

%e)%%%%%%%%%%%%%%%%%%%%%%% P E M %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

im_pem=2;

if im_pem==1

n=2; m=1; ms=canform(n,m,[1,1,1]); % Modellstructur

th0=ms2th(ms); % Transform til theta form.

th_pem=pem([y u],th0); % Id. parametre.

[a_pem,b_pem,d_pem,e_pem,c_pem,x0_pem]=th2ss(th_pem);

else

% or as follows, for siso systems.

% po=[na nb nc nd nf nk]=[2 3 2 0 0 0]; th=pem([y u],po);

po=[2 3 2 0 0 0];

th_pem=pem([y u],po);

end

[a_pem,b_pem,d_pem,e_pem,c_pem,x0_pem]=th2ss(th_pem);

ym_pem=dlsim(a_pem,b_pem,d_pem,e_pem,u,x0_pem);

hd_pem=ddcgain(a_pem,b_pem,d_pem,e_pem);

hs_pem=ddcgain(a_pem,c_pem,d_pem,1);

%%%%%%%%%%%%%%%%%%%%%%%%%% O E %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

nb=3; na=2; nk=0; th_oe=oe([y u],[nb,na,nk]);

[a_oe,b_oe,d_oe,e_oe,c_oe,x0_oe]=th2ss(th_oe);

hd_oe=ddcgain(a_oe,b_oe,d_oe,e_oe);

% KOMMENTARER

% -DSR OG PEM er generelle metoder, dvs. hele Kalman-filteret estimeres.

% -ARMAX identifiserer ogsaa et fullstendig Kalman-filter, men denne

% virker bare for SISO systemer. For et SISO system kan ARMAX med fordel

% benyttes i stedet for PEM.

% -ARX og OE er kan ikke estimere hele Kalman-filteret.

% -Parametrene i en ARX modell kan identifiseres direkte vha minste

% kvadraters metode.

37



16 Exercise (PEM, DSR. MIMO system.)

The time series on the files yov10.dat and uov10.dat are to be used in this
exercise. The data is from a MIMO system described by the state space model

xk+1︷ ︸︸ ︷ x1
x2
x3


k+1

=

A︷ ︸︸ ︷ −1.5 1 0.1
−0.7 0 0.1

0 0 0.85


xk︷ ︸︸ ︷ x1
x2
x3


k

+

B︷ ︸︸ ︷ 0 0
0 1
1 0


uk︷ ︸︸ ︷[
u1
u2

]
k

+

C︷ ︸︸ ︷ 0 0.1
0.1 0
0 0.2


vk︷ ︸︸ ︷[
v1
v2

]
k

(69)

yk︷ ︸︸ ︷[
y1
y2

]
k

=

D︷ ︸︸ ︷[
3 0 −0.6
0 1 1

] x1
x2
x3


k

+

[
1 0
0 1

] wk︷ ︸︸ ︷[
w1

w2

]
k

(70)

where the initial state is given by

xk=1 =
[

0 0 0
]T

. (71)

A Pseudo Random Binary Signal (PRBS) experiment is performed in each of
the two input variables of the system. The experiment is of length N = 2000
discrete time instants (samples). The experiment is generated within MATLAB
as follows

u1 = idinput(N,′ prbs′, [0, 1/M1]);
u2 = idinput(N,′ prbs′, [0, 1/M2]);

where M1 = 10 and M2 = 20. The parameter M1 = 10 means that the
experiment in input channel (variable) one is constant over intervals of length
M1 = 10 samples. This gives an input data matrix

U =
[
u1 u2

]
,

where U ∈ RN×2.
The process noise vk and the measurements noise wk are both withe with zero
mean and generated in MATLAB as follows

randn(′seed′, 0);
v = randn(N, 1);
w = randn(N, 1);

The simulated output ydk of the system is defined as the output of the deter-
ministic part of the above state space model, i.e.,

xdk+1 = Axdk + Buk (72)

ydk = Dxdk + Euk (73)

It is in system identification, model identification and validation normal to
investigate the error

edk = yk − ydk ∀ k = 1, . . . , N (74)
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This is called the simulated error.
A good model (A,B,D,E) is a model which results in a small simulated error
edk. The size of the error can be measured by some matrix norm of the covariance
matrix of the error

Λd =
1

N − 1

N∑
k=1

edk(edk)T =
1

N − 1
(Ed)TEd (75)

where Ed = Y − Y d is an N ×m matrix of the error at the N time instants.
Note that the simulated error edk in general is different from the prediction error
ek = yk − ȳk where ȳk is the optimal prediction. The prediction error of the
model is computed by first simulating the optimal predictor (the Kalman filter),
i.e.

xk+1 = Axk + Buk + K

ek︷ ︸︸ ︷
(yk −Dxk − Euk) (76)

ȳk = Dxk + Euk (77)

which gives the prediction error as

ek = yk − ȳk ∀ k = 1, . . . , N (78)

The size of this error is measured as the size of the covariance matrix

Λ =
1

N − 1

N∑
k=1

eke
T
k =

1

N − 1
ETE (79)

where E = Y − Ȳ is an N ×m matrix of the prediction error at the N discrete
time instants.
Note that (79) is a true expected estimate of the exact covariance matrix Λ0 =
E(eke

T
k ). A common way of measuring the size of the prediction error for

systems with multiple outputs is to use the trace operator, i.e.,

VN = trace(Λ). (80)

Similarly, the size of the simulated error covariance matrix can be measured as
follows

V d
N = trace(Λd). (81)

One of the goals of this exercise is to give experience in using the IDENT
Toolbox function pem and the subspace system identification function dsr for
the identification of MIMO systems.
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Exercise 16 part 1

We will first analyze the underlying system by first compute some characteristic
parameters of the system.

a) Compute the steady state gain hd from uk to yk and the steady state gain
hs from ek to yk. Compute the eigenvalues of the transition matrix A ind
investigate if the system is stable.

b) Simulate the given system by using dsrsim.m or dlsim.m. Compare the
data with the data on the files yov10.dat and uov10.dat.

Exercise 16 part 2

a) Use the DSR algorithm in order to identify a state space model for the
process. use the time series on the files yov10.dat and uov10.dat. Your
own simulated data can also be used. Compute steady state gain hd from
uk to yk, and the prediction error criterion VN for the model.

b) Use the IDENT Toolbox function pem.m in order to identify a state space
model for the system. Specify the parameters in the calling/input argu-
ments to pem.m. Compute steady state gain hd from uk to yk, and the
prediction error criterion VN for the model.

Exercise 16 part 3

a) Compare the computation time used by the two methods. See the MATLAB
function flops.m. The flops.m function works only for earlier versions
of MATLAB. Try the tic and toc commands within MATLAB instead.
Which of the methods, DSR ore PEM, are the fastest.

b) Compare the obtained models found by the different identification methods
with respect to eigenvalues, steady state gain and value of the prediction
error criterion.
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Solution proposal Exercise 16

A solution proposal is given as a MATLAB m-file script. See the file losn oppg14.m,
given below.
The input experiment performed on the process is shown in Figure 1.

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−1

−0.5

0

0.5

1
u1: experiment for 1st input

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−1

−0.5

0

0.5

1
u2: experiment for 2nd input

Figure 1: PRBS input to experiment design.

The actual output yk and the simulated output ydk from the identified DSR
model are shown in Figure 2.
The actual output yk and the simulated output ydk from the identified PEM
model are shown in Figure 3.
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0 200 400 600 800 1000 1200 1400 1600 1800 2000
−40

−20

0

20

40
DSR: Actual and simulated output y1

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−10

−5

0

5

10
DSR: Actual and simulated output y2

Figure 2: The figure illustrates results from the simulated DSR model as well
as the actual output.

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−40

−20

0

20

40
PEM: Actual and simulated output y1

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−10

−5

0

5

10
PEM: Actual and simulated output y2

Figure 3: Actual output and results from the simulated PEM model.
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Solution proposal, Exercise 16

%losn_oppg14.m

%

% Solution to excercise 14, System identification

% Abstarct: This is an excercise in using the DSR and PEM algorithms for

% identifying a MIMO system.

%%%%%%%%%%%%%%%%%%%%%%%%%% INPUT EXPERIMENT DESIGN %%%%%%%%%%%%%%%%%%%%%%%%%%%%

disp(’Make input experiment’)

N=2000;

itool = 2;

if itool == 1

% M1=10; u1=idinput(N,’prbs’,[0,1/M1]); % need new IDENT Toolbox

% M2=20; u2=idinput(N,’prbs’,[0,1/M2]);

else

u1=prbs1(N,50,100);

u2=prbs1(N,25,75);

end

u=[u1 u2];

figure(1)

subplot(211), plot(u1), title(’u1: experiment for 1st input’)

subplot(212), plot(u2), title(’u2: experiment for 2nd input’)

% print -deps input_ov10

%%%%%%%%%%%%%%%%%%%%%%%%% Genereate data by simulating the model %%%%%%%%%%%%%%

randn(’seed’,0)

[y,u,v,w,A,B,D,E,C,F] = modsim(1,1,u,N); % yov10=y, uov10=u

yd=dlsim(A,B,D,E,u); % Simulated output.

%%%%%%%%%%%%%%%%%%%%%%%%% IDENTIFY MODEL WITH DSR TOOLBOX %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

figure(2)

flops(0); % reset flop counter

[a_dsr,b_dsr,d_dsr,e_dsr,c_dsr,f_dsr,x0_dsr]=dsr(y,u,2); % DSR Toolbox

k_dsr=c_dsr*inv(f_dsr); % Kalman gain matrix.

ym_dsr=dlsim(a_dsr,b_dsr,d_dsr,e_dsr,u,x0_dsr); % simulated output

nf_dsr=flops; % # of flops used by DSR

hd_dsr=ddcgain(a_dsr,b_dsr,d_dsr,e_dsr);

e_dsr=y-ym_dsr; L_dsr=e_dsr’*e_dsr; L_dsr=L_dsr/(N-1); % Covariance matrix of model error.

figure(3)

subplot(211), plot([y(:,1) ym_dsr(:,1)]), title(’DSR: Actual and simulated output y1’)

subplot(212), plot([y(:,2) ym_dsr(:,2)]), title(’DSR: Actual and simulated output y2’)

% print -deps ym_dsr
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%%%%%%%%%%%%%%%%%%%%%%%%% IDENTIFY MODEL WITH PEM %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

disp(’Identify model with PEM....(wait)’)

flops(0);

th0=canstart([y u],[2 1],2,[1,1,1]); % estimate initial model

th=pem([y u],th0); % identify model with PEM

[a_pem,b_pem,d_pem,e_pem,k_pem,x0_pem]=th2ss(th);

ym_pem=dlsim(a_pem,b_pem,d_pem,e_pem,u,x0_pem);

nf_pem=flops; % # of flops used by PEM.

hd_pem=ddcgain(a_pem,b_pem,d_pem,e_pem); % Deterministic gain

e_pem=y-ym_pem; L_pem=e_pem’*e_pem; L_pem=L_pem/(N-1); % Covariance matrix of model error.

figure(4)

subplot(211), plot([y(:,1) ym_pem(:,1)]), title(’PEM: Actual and simulated output y1’)

subplot(212), plot([y(:,2) ym_pem(:,2)]), title(’PEM: Actual and simulated output y2’)

% print -deps ym_pem

disp(’Number of flops used by DSR’)

nf_dsr

disp(’Number of flops used by PEM’)

nf_pem

disp(’Ratio flops_dsr and flops_pem=’)

nf_pem/nf_dsr

disp(’CONCLUSIONS’)

disp(’PEM are using approximately 25 times more flops as DSR.’)

disp(’This is in agrement with the statement that DSR is faster than PEM.’)
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17 Exercises (validation by using functions in the
IDENT Tolbox for MATLAB)

a) Identify a model by using the dsr.m function. Take one of the given data
set as the starting point.

b) Use the dsr prd.m and dsrpred.m functions in order to compute an M-
step ahead prediction of the output yt. Chose for example M = 5.

c) Take the file dsrpred.m as the starting point and modify this file so that the
theta format file is an output argument from the m-file. Call the modified
file for dsrpred2.m. The theta format variable, th, is the model structure
format used in the IDENT Toolbox.

d) Compute residuals, confidence intervals by the function resid.m.
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18 Exercise (higher order ARX model followed by
model reduction)

We will in this exercise study a ”subspace” alike method for subspace identifica-
tion which is based on the following. First estimate a higher order ARX model
and then follow with a model reduction step. The method can be illustrated
in the following steps, which also give guidelines for how to implement such a
method for system identification in MATLAB:

1. Identify a higher order ARX model. Use with advantage the arx.m func-
tion in the IDENT Toolbox for MATLAB. For example as follows:

th=arx([Y U],[L L 1]);

where L is a ”large” positive integer parameter representing the order of
the higher order ARX model, e.g. chosen in the interval L = 5 to L = 20.

2. Transform the higher order ARX model to a higher state space model.
Use with advantage the th2ss.m function in the IDENT Toolbox for
MATLAB, e.g. as follows:

[A B D E K]=th2ss(th);

3. Based on the above higher order state we can compute estimates of the
impulse response matrices of the system, i.e.

Hi = DAi−1[B K] ∀ i = 1, . . . , 2L (82)

4. A reduced nth order state space model can now be constructed by us-
ing Hankel matrix realization theory. Write down or define the Hankel
matrices H1|L and H2|L and analyze the order of the system and find a
state space model via Singular Value Analysis (SVD) on the following
equations.

H1|L = OLCL, (83)

H2|L = OLACL. (84)

Hence, the system order n can be found by inspection of the number of
large singular values of the Hankel matrix H1|L. The extended observabil-
ity matrix OL and the extended controllability matrix CL can be found
from the SVD of H1|L. The D, B and K model matrices are found from
OL and CL. Finally, the transition matrix A is found from H2|L when OL

and CL are known.

This algorithm may be useful for system identification of closed loop systems.
A matlab m-file script to simulate a 2nd order SISO system controlled by a
PI controller is implemented in the file main clop dat.m. The system is per-
turbed by a binary signal in the reference. Those data (Y,U) may be used in
this exercise.
Compare the results obtained by this higher order ARX model with model
reduction and the results obtained by using the dsr e.m function.
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