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Abstract: In this study, the authors present an overview of closed-loop subspace identification methods found in the recent
literature. Since a significant number of algorithms has appeared over the last decade, the authors highlight some of the key
algorithms that can be shown to have a common origin in autoregressive modelling. Many of the algorithms found in the
literature are variants on the algorithms that are discussed here. In this study, the aim is to give a clear overview of some
of the more successful methods presented throughout the last decade. Furthermore, the authors retrace these methods to a
common origin and show how they differ. The methods are compared both on the basis of simulation examples and real data.
Although the main focus in the literature has been on the identification of discrete-time models, identification of continuous-
time models is also of practical interest. Hence, the authors also provide an overview of the continuous-time formulation of
the identification framework.
1 Introduction

Closed-loop subspace identification of linear systems is of
great practical interest for a number of reasons. Linear mod-
els are often required for (model-based) control design and,
by directly using measured data, system identification over-
comes some of the limitations of first principles modelling.
Often, simplifying assumptions are made and limited knowl-
edge of true physical parameters is available. For these
reasons, system identification may provide more accurate
estimates of natural frequencies and input–output gains and
hence may also complement modelling on the basis of first
principles. In particular, the advantage of subspace meth-
ods compared with prediction-error methods [1] has long
been recognised in the context of multivariable systems.
For these systems, the parametrisation of a prediction-error
model structure often leads to an error criterion that is not
convex in the parameters. In contrast, the successful closed-
loop subspace identification methods developed in recent
years consist of a sequence of linear least-squares problems
and a model reduction step. In fact, these methods combine
prediction-error identification – the estimation of a high-
order auto regressive with external input (ARX) model –
as an initial step with typical subspace-related subsequent
steps [2–5]. Furthermore, regarding the closed-loop nature
of such methods, one may observe that in many practical
cases feedback is indeed present. On the one hand, this may
be necessary owing to instability of the open-loop plant, tight
process tolerances, limited access to internal signals of the
system or the requirement to stay close to an equilibrium
IET Control Theory Appl., 2013, Vol. 7, Iss. 10, pp. 1339–1358
doi: 10.1049/iet-cta.2012.0653
around which one can consider the behaviour of the plant
linear. On the other hand, in the literature on identification
for control [6] it has often been pointed out that is is desir-
able to identify a system under circumstances that are close
to the real application – that is, in closed-loop – since this
results in improved estimation of the dynamics, in particular
around the cross-over frequency.

In a closed-loop setting the input signal to the system
is typically correlated with the process and measurement
noise sources. The presence of correlation because of feed-
back of stochastic signals (e.g. the feedback of process
and/or measurement noise) has traditionally hampered sub-
space identification in achieving consistent estimates. First
efforts to develop subspace methods for data obtained under
closed-loop conditions were made in the mid-1990s, soon
after the development of the main open-loop subspace meth-
ods, see for instance [7–10]. The method developed in [7]
shows similarities to the ‘joint input–output method’ well-
known in closed-loop prediction-error identification [11–13],
by combining identification of the closed-loop system with
knowledge about the controller. In [8], closed-loop subspace
identification of a restricted class of closed-loop systems is
considered by means of instrumental variables (IV). In [9]
the N4SID class of open-loop methods is extended to closed-
loop systems, but certain knowledge about the controller is
required.

One could state that the ideas presented in [10] have
been pivotal to reaching the current state of the art. In that
article, high-order ARX modelling was first proposed as a
means to deal with correlation issues because of operation
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in closed-loop, and it is now a feature of the state-of-the-
art algorithms. In the year 2003, several articles appeared
that again considered the problem of identification in feed-
back [3, 14–16]. The article by Qin and Ljung [3] described
the first ‘innovation estimation’ algorithm, in which the
first step is to estimate the innovations process. In the arti-
cle by Jansson [14] the construction of a state predictor
as it is currently used in the closed-loop state estimation
algorithms, such as predictor-based subspace identification
(PBSID), was first considered. The articles by Chiuso and
Picci in that same year [15, 16] provided much of the theo-
retical insight behind these methods, discussing how to deal
with feedback models.

While, as we mentioned, Jansson [14] already considered
the construction of a state predictor, it was not until 2007
[2] that these developments were combined with the esti-
mation of an ARX model as was proposed earlier in [10].
This resulted in the efficient PBSID algorithm [2], which is
currently one of the most promising solutions in closed-loop
subspace identification. The innovation estimation algorithm
by Qin and Ljung has also seen several further developments
over the last decade, resulting in simpler and more efficient
implementations [4, 5, 17].

It is interesting to note that all these methods have in com-
mon that they rely on estimating a high-order ARX structure
to start with. As pointed out by Chiuso [18], the develop-
ments in these two broad classes of subspace methods (the
state estimation and innovation estimation algorithms) can
be seen as a significant step forward towards a satisfactory
solution for closed-loop subspace identification problems.

Several other modifications to the existing subspace algo-
rithms, to deal with the closed-loop identification problem,
have been proposed in parallel, see for instance [19–21].
In [19] a method is presented that is analogous to the
indirect ‘two-stage method’ in prediction-error identifica-
tion [13]. In [20] a joint input–output method is presented
similar to [7], which focuses on the deterministic subsys-
tems. Finally, in [21] an IV approach was developed, which
requires an estimate of the noise model that is not available
a priori (see [22] for a recent overview of these IV meth-
ods for prediction-error identification.). Hence, an iterative
procedure is proposed to estimate the model.

In prediction-error identification the available approaches
can typically be classified as ‘direct’, ‘indirect’ and ‘joint
input–output’ approaches [13]. In this paper, we focus on
closed-loop susbpace methods that we would like to clas-
sify as direct methods [2, 4, 5, 17]. Although these methods
consist of several steps, they operate directly on the available
input–output data. These ‘direct’ subspace methods have the
advantage that they place the fewest restrictions on the feed-
back mechanism. The main drawbacks of the indirect and
joint input–output methods [7, 9, 19–21] are that linearity of
the closed-loop system (not just the plant) must be assumed
and that care must be taken with pole-zero cancellations
between the plant and the controller.

Based on the foregoing discussion it can be concluded
that the field of closed-loop subspace identification has been
very active. So active in fact, that a first-time survey of
algorithms and methodologies may be daunting to readers
who are new to the field. The aim of this paper is to give
an overview of some of the more successful methods pre-
sented throughout the last decade. Furthermore, we retrace
these methods to a common origin and show how they
differ. A natural question to be asked is which method is the
best for a particular purpose. This is a hard question, since
indeed it depends on the purpose of the identified model
1340
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[6], the type of the underlying system [23] – particularly
using finite sequences – and experimental conditions. Many
authors have addressed this issue from a theoretical perspec-
tive, regarding asymptotic consistency and variance [23–26].
When dealing with practical conditions, that is, finite-length
sequences and systems of unknown order (or distributed-
parameter systems), the various methods discussed here may
perform rather differently.

Although most of the research in system identification
focuses on discrete-time models, in many situations of prac-
tical interest (such as, e.g. aircraft and rotorcraft identifica-
tion, see e.g. [27–29]) the direct estimation of the parameters
of a continuous-time model from sampled input–output data
is desirable, and for that dedicated methods and tools are
needed. In addition, there exist special cases in which iden-
tifying discrete-time models can be critical, such as the
identification of stiff systems or the use of non-equidistantly
sampled data, which make it necessary to develop special
algorithms that can deal with these cases. The development
of identification methods for continuous-time models is a
challenge of its own, and has been studied extensively (see,
e.g. the recent book [30] and references therein, and the
recent special issue [31]).

The problem of closed-loop subspace identification in
continuous-time has been first considered in the literature
in [32], where the application of the errors-in-variables
approach of [8] is proposed to deal with correlation in a
continuous-time setting.

More recently, see [33–35], novel continuous-time sub-
space model identification (SMI) schemes, based on the
derivation of PBSID-like algorithms within the all-pass
domains proposed in [36, 37] and relying, respectively, on
Laguerre filtering and Laguerre projections of the sampled
input–output data have been proposed.

The paper proceeds as follows: first, in Section 2, we
present the predictor framework that is common to the meth-
ods discussed in this paper. In Section 3, it is shown how the
results from Section 2 can be used in several ways to arrive
at a state-space realisation and which user choices must be
made. This leads us to the essential features of many of the
different methods considered in the literature. Section 4 is
devoted to the discussion of closed-loop subspace identifi-
cation for continuous-time models. Finally, in Section 5 we
describe the results of some experimental studies performed
using the presented algorithms. In the first two examples
we consider two numeric examples to study the differ-
ences between the basic algorithms. In the third example,
we consider closed-loop identification of beam dynamics
and we consider the quality of the identified models on the
basis of Monte Carlo experiments. In the fourth example,
continuous-time models are identified of the same system.
The paper concludes with a brief discussion of the results.

2 Discrete-time identification framework

In this section, we present the framework for closed-
loop identification of discrete-time systems. It is assumed
throughout that the system to be identified is a finite-
dimensional, linear, time-invariant system, subject to mea-
surement and/or process noise. Based on these assumptions,
the system admits a discrete-time innovation state-space
representation Pd given by

Pd :

{
xk+1 = Axk + Buk + Kek

yk = Cxk + Duk + ek

(1a)

(1b)
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with A ∈ Rn×n, B ∈ Rn×nu , K ∈ Rn×ny , C ∈ Rny×n and D ∈
Rny×nu . The vectors xk ∈ Rn, uk ∈ Rnu , yk ∈ Rny and ek ∈
Rny are the state vector, input signal, output signal and inno-
vation signal, respectively. The matrix K is the Kalman
gain. The innovation sequence ek is an ergodic zero-mean
white noise sequence with covariance matrix E{eje�

k } =
W δjk , with W � 0.

It is assumed that the pair (A, C) is observable and the
pair (A, [B KW

1
2 ]) is reachable. While A − KC could have

eigenvalues on the unit circle, in this context we assume
that all eigenvalues are inside the unit circle, to allow con-
sistent estimation of the observer Markov parameters (see
Section 2.2). The state-space model (1) is the innovation
model associated with a generic state-space model.

In representation (1), ek may be eliminated from the first
equation to yield a system description in one-step-ahead
predictor form

xk+1 = Ãxk + B̃uk + Kyk (2a)

yk = Cxk + Duk + ek (2b)

where Ã ≡ A − KC and B̃ ≡ B − KD have been introduced
for brevity. We will use the notation ·̃ whenever a parameter
refers to the predictor model (2). This representation forms
the basis for the PBSID framework [38].

The goal of the following subsections will be to deliver
a unified presentation of the closed-loop subspace identifi-
cation methods, showing that they have a common origin.
Our aim is to provide the reader with a good understanding
of key steps in the algorithms, both for implementation and
analysis purposes.

For reference purposes, we define the identification prob-
lem below in Problem 1. It is assumed that the plant
P operates in closed-loop with a, not necessarily linear,
controller C as shown in Fig. 1. In this figure, it is already
assumed that the noise effects are modelled as if originating
from a filtered innovation sequence. For convenience, we
define a combined reference signal (without assuming that
the controller is linear time invariant (LTI))

rk = r1,k + C(r2,k)

Note that recent research has demonstrated that care must
be taken when identifying an LTI system controlled by a
non-linear feedback mechanism. In [39] it is demonstrated
that problems may occur if the controller is non-linear and
if the true noise model is not stably invertible, for example,
if it is non-minimum phase.

We assume that the feedback system is well-posed, imply-
ing that the output is uniquely determined by the states. The
feedback system is well-posed if the controller or the plant
or both have no direct feedthrough component. If the system

Fig. 1 Closed-loop configuration � considered in Problem 1
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and the controller are both LTI, the condition for well-
posedness is satisfied if I ny + DDc is non-singular, where Dc

is the feedthrough matrix of the controller [9, 40]. Hence,
without any means of constraining the structure of D, we
can either choose to include it or not in the identification
procedure, depending on the feedback system having direct
feedthrough or not. Note that a correct choice is necessary
to obtain consistent estimates of the Markov parameters; see
Section 2.2.3.

It is further assumed that the reference signal rk is such
that uk and yk are jointly persistently exciting of sufficiently
high order (see Section 2.2.3 for more details).

Problem 2.1: Discrete-time subspace identification prob-
lem Based on a finite set of input and output data {uk , yk}N−1

k=0
obtained from a system �, estimate the order n of the
discrete-time system Pd and the associated system matrices
(A, B, C , D, K) up to a similarity transformation.

2.1 Preliminaries and notation

Before deriving the data equations for subspace identifi-
cation, we will introduce some notation. We introduce a
stacked sample of input and output data zk according to

zk =
[

uk

yk

]
The stacked vector z(p)

k is defined as

z(p)

k = [
z�

k−p, z�
k−p+1, . . . , z�

k−1

]�
where p denotes the ‘past window’ size. We also define a
reversed extended controllability matrix K̃(p)

K̃(p) =
[
Ã

p−1
B̄, Ã

p−2
B̄, . . . , B̄

]
(3)

where we have defined B̄ = [B̃, K ] for brevity. We empha-
sise that this matrix contains parameters pertaining to the
‘predictor’ representation (2). We will further denote block
Hankel matrices constructed from data sequences according
to

Y i,s,N =

⎡⎢⎢⎣
yi yi+1 · · · yi+N−1

yi+1 yi+2 · · · yi+N
...

...
. . .

...
yi+s−1 yi+s · · · yi+N+s−2

⎤⎥⎥⎦
such that Y i,s,N has yi as its first element and possesses s
block rows and N columns. We will sometimes consider
block-row matrices, that is, with s = 1, which we shall
denote by Y i,N . Finally, we define the block-Toeplitz matrix
H (f )(B, D) pertaining to the innovation (1) model, which
is to be used later when the Multivariable Output-Error
State-sPace (MOESP) algorithm is outlined

H (f )(B, D) =

⎡⎢⎢⎣
D 0 0 · · · 0

CB D 0 · · · 0
...

. . .
. . .

. . .
CAf −2B CAf −3B · · · CB D

⎤⎥⎥⎦
Likewise, we define the matrix H (f )(K , 0).
1341
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2.2 Data equations

In this section, we derive the data equation that is common
to many of the closed-loop subspace algorithms. Starting
from some initial state xk , the state equation (2a) can be
propagated forward in time, resulting in the expression

xk+p = Ã
p
xk + K̃(p)z(p)

k+p. (4)

Based on (4) and the output equation (2b), the output at time
k + p can then be written as

yk+p = CÃ
p
xk + CK̃(p)z(p)

k+p + Duk+p + ek+p (5)

By the assumption that Ã has all its eigenvalues inside the
open unit disc, the term Ã

p
can be made arbitrarily small,

that is, ‖Ã
p‖2 � 0, by choosing p sufficiently large. [See

also Section 3.5.1 further on regarding this issue in rela-
tion to finite data lengths.] For that reason, the first term
on the right-hand sides of (4) and (5) will be neglected.
Since all further algorithms are based on this assumption,
we introduce it formally.

Assumption 2.1 Negligible bias: It is assumed that the choice
of the past window size p results in Ã

p = 0.

Depending on the number of samples available and based
on Assumption 2.1, (5) can be repeated to obtain expressions
for yp up to yN−1, resulting in

Y p,Np = CK̃(p)Z0,p,Np + DU p,Np + Ep,Np (6)

Here, we have defined Np = N − p for brevity. In the
remainder of this article, the equality in (6) is under-
stood to hold under Assumption 2.1. As noted before, the
feedthrough term D should only be included when the feed-
back loop contains at least a one-sample delay (i.e. has no
direct feedthrough) to retain consistency of the identification
problem. From (6) it is clear that if the controller has direct
feedthrough, U p,Np is correlated with Ep,Np and the Markov
parameters can no longer be estimated consistently.

Remark 2.1: If one leaves out the input terms in the assumed
model structure (1), it is possible to identify a stochastic
model (spectral factor) of a process driven by white noise on
the basis of output measurements only. In these cases, how-
ever, there is no need to apply a closed-loop identification
method. See, for example, [41, Chapter 3], [40, 42].

2.2.1 Relation to the ARX model structure: Tak-
ing a closer look at the data equation (5), neglecting the
first term on the right-hand side (for p → ∞), it is seen
to have a vector-ARX (VARX) structure. Usually, an ARX
model structure prescribes a severely restrictive noise model
because it forces the system and noise model to have a
common set of poles as seen from the following equation

A(z)yk = B(z)uk + ek (7)

with z−1 the unit backshift operator and

A(z) = I − a1z−1 − · · · − apz−p

B(z) = b0 + b1z−1 + · · · + bpz−p

In this context, based on the assumption that p is chosen
sufficiently large and working with the predictor form (2),
1342
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it follows that the high-order VARX model is fully equiva-
lent to the predictor model. The fact that a high-order ARX
model can approximate a predictor model with arbitrary
accuracy is well-known in prediction-error identification; cf.
[43, example 10.11].

Regarding the ARX model structure defined in (7), the
parameters ai and bi can explicitly be given as the Markov
parameters of the predictor form (2)

ai = CÃ
i−1

K , for i = 1 . . . p (8a)

bi = CÃ
i−1

B̃, for i = 1 . . . p (8b)

b0 = D (8c)

This follows by a direct comparison of (7) with (5) after
neglecting the contribution of the initial state (i.e. for
p → ∞).

2.2.2 Closed-loop identification issues: Traditional
formulations of subspace identification methods often
require the plant to operate under open-loop conditions.
If such methods are applied to data obtained under closed-
loop conditions, the fact that the input signal to the system
is correlated with the noise processes is disregarded or
neglected. The implicit assumption in such methods is that
the input signal uk is uncorrelated with the past noise pro-
cess ek . In a closed-loop situation, however, it is clearly seen
that this condition is violated

E{uke�
j } 
= 0 for j < k

Over the last two decades, several strategies have been
introduced to deal with this issue, of which we mention a
few:

1. Use an open-loop subspace identification method and
either accept the bias on the system estimate or use it as
an initial model in a prediction-error method [1]. Many
prediction-error methods are available to deal with closed-
loop situations [13, 44]. It is nevertheless of interest to use a
subspace method that is better suited to closed-loop data to
obtain a better initial estimate for prediction-error methods,
which rely on solving a non-convex optimisation problem;
2. Use a particularly chosen reference signal rk as, for
example, discussed in [8] to retain certain consistency prop-
erties of the identification algorithm. In [45], it is argued
that, if the feedback is still an open choice, correlation issues
because of feedback can also be remedied by a particular
choice of the feedback mechanism, for example, if state
feedback based on a Kalman filter is applied. The states
estimated by a Kalman filter are (in an ideal setting) uncor-
related with the innovations. Hence, the feedback signal
contains no feedback of the noise process(es). Obviously,
this approach only lends itself to certain design cases. On
page 9 and onwards in [46], the effect of specific input
signals on the properties of the closed-loop identification
problem is also discussed.
3. Use knowledge of the controller, which is then often
assumed to be LTI, to achieve consistent estimates [7, 9, 20].
4. Modify the subspace identification algorithms so as to
achieve identification methods that are directly suited to
closed-loop data [2–5, 10, 14, 17, 19, 21, 47]. In this paper,
we treat the most dominant developments in closed-loop
subspace identification, given by the methods that perform
high-order ARX modelling followed by a second step that
IET Control Theory Appl., 2013, Vol. 7, Iss. 10, pp. 1339–1358
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includes model reduction [2–5, 10, 14, 17]. In prediction-
error identification, the available approaches can typically
be classified as ‘direct’, ‘indirect’ and ‘joint input–output’
approaches [13]. In this paper, we focus on closed-loop
subspace methods that we would like to classify as direct
methods [2–5, 10, 14, 17]. Although these methods con-
sist of several steps, they operate directly on the available
input–output data and have the advantage that they place the
fewest restrictions on the feedback mechanism.

In the PBSID framework, resulting in (VARX) data equa-
tions of the form (6), the estimation is not affected by
correlation issues, by segregating the data into collections of
‘past’ and ‘future’ samples. Thus, asymptotically in the num-
ber of samples N and the past window size p, the parameters
can be consistently estimated.

2.2.3 Estimating the predictor Markov parameters:
Based on the assumption that ek is the zero-mean white noise
innovation sequence and on Assumption 2.1, the predictor
Markov parameters in (6) can be consistently estimated in a
least-squares sense

min
[CK̃(p) D]

∥∥∥∥Y p,Np −
[
CK̃(p) D

] [Z0,p,Np

U p,Np

]∥∥∥∥2

F

(9)

For a full-rank data matrix
[

Z�
0,p,Np

, U�
p,Np

]�
, the least-squares

solution can be found from an RQ decomposition [48] of
the data. Performing an RQ factorisation of the stacked data
matrices one obtains⎡⎣[Z0,p,Np

U p,Np

]
Y p,Np

⎤⎦ =
[

R11 0
R21 R22

] [
Q1
Q2

]

from which it can be derived that the parameters can be
found by solving

R21 = ̂[
CK̃(p) D

]
R11

for example, using back-substitution. In addition, using the
orthogonality of the rows of Q, we may obtain an estimate
of Ep,Np , according to

Êp,Np = R22Q2 (10)

This matrix contains an estimate of the innovation sequence
of the innovation state-space model (1). Note that the inno-
vation sequence is obtained without explicitly solving the
least-squares problem. Note that if D is included, it has now
been estimated and thus its estimation will not be considered
further on.

Based on the least-squares solution, we now have esti-
mates of the predictor Markov parameters (8) and the
innovation sequence {ek}N−1

k=p .
It is obvious that uniqueness of the parameter estimate

requires Z̄ = [
Z�

0,p,Np
, U�

p,Np

]�
to be of full rank. The informa-

tion matrix I = Z̄ Z̄
�

related to the least-squares solution
will then be positive definite. This requirement in turn
depends on the experimental data, and thus on the true sys-
tem, reference excitation and the nature of the feedback
mechanism [49]. For interesting accounts regarding model
identifiability and experiment requirements, see, for exam-
ple, [49, 50]. We emphasise that in practice, purely from
IET Control Theory Appl., 2013, Vol. 7, Iss. 10, pp. 1339–1358
doi: 10.1049/iet-cta.2012.0653
an identification point of view it is usually advantageous to
make the reference perturbations as large as possible within
the limitations of the system and the requirement to stay
close to an operating point around which the system behaves
linearly. In many cases, it may be necessary to be more judi-
cious in the choice of perturbations: this leads to the topic
of least costly identification [6, 51].

2.2.4 Least-squares sensitivity: It is interesting to
note that using the estimate Êp,Np instead of the Markov
parameters may be advantageous in certain cases where
the data matrix Z̄ = [

Z�
0,p,Np

, U�
p,Np

]�
is poorly conditioned.

This may occur when the joint input–output data is not rich
enough, for example, owing to the nature of the experiment,
poor excitation of reference signals or a low-complexity
feedback path [49]. In fact, it can be shown that the esti-
mate of the least-squares residual of (9) is less sensitive to
ill-conditioning than the estimate of the parameters them-
selves. The worst-case sensitivities of the two estimates are
related to the condition number � of the data matrix as
follows [48]

parameters:

∥∥∥∥� ̂[
CK̃(p), D

]∥∥∥∥
2∥∥∥[CK̃(p), D

]∥∥∥
2

∝ �
(
Z̄
)2

residual:

∥∥�Êp,Np

∥∥
2∥∥Y p,Np

∥∥
2

∝ �
(
Z̄
)

where �(·) denotes the condition number. This shows that
the estimate of the parameters may be far more sensitive to
ill-conditioning than the estimate of the residual.

It is hard to draw further general conclusions from these
facts, in particular since one of the estimates is used in
state reconstruction algorithms (e.g. PBSIDopt, Section 3.3),
whereas the other is used in algorithms, which estimate
the observability matrix (e.g. CLMOESP, Section 3.4). It is
expected, however, that in cases where the data matrix
is severely ill-conditioned, the estimate of the innovation
sequence may be more reliable than that of the Markov
parameters, in particular for the subsequent step of esti-
mating the observability matrix and hence the eigenvalues.
Section 5.2 discusses an example that illustrates this possible
effect.

3 Obtaining a state-space realisation

In the previous section, estimates were obtained for the
Markov parameters and the innovation signal pertaining to
the predictor model (2). In the following subsections, we
consider four different methods to arrive at a solution to
the identification problem (Problem 1) based on these esti-
mates. Fig. 2 schematically depicts the different routes from
input–output data to an identified model with references to
the appropriate subsections.

3.1 Direct parametrisation

It is possible to directly obtain a non-minimal state-space
model, by casting the estimated ARX model parameters into
1343
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Fig. 2 Schematic representation of the relation between the dif-
ferent closed-loop subspace algorithms

a state-space parametrisation of order (ny + nu)p (11)

zk+1 =

⎡⎢⎢⎢⎢⎢⎣
0 I

. . .
. . .
0 I

0 · · · · · · 0
̂CK̃(p)

⎤⎥⎥⎥⎥⎥⎦ zk +

⎡⎢⎢⎢⎢⎣
0
...
0
I
D

⎤⎥⎥⎥⎥⎦uk +

⎡⎢⎢⎣
0
...
0
I

⎤⎥⎥⎦ ek (11a)

yk = ̂CK̃(p)zk + Duk + ek (11b)

Since the VARX parameters are directly placed in the state-
space matrices, we shall refer to this parametrisation as the
‘direct parametrisation’. The order of this model could sub-
sequently be reduced using a model reduction algorithm.
A notable advantage of the direct parametrisation is that the
state is measurable, since it is given by delayed samples
of input/output data. Furthermore, the variance on the ele-
ments of the state-space matrices is directly provided by the
least-squares estimate (9). These interesting features were
exploited in [52] for purposes of robust state-feedback com-
pensator design. Direct use is also made of the predictor
Markov parameters in closed-loop subspace predictive con-
trol (SPC) [53]. A drawback of the direct parametrisation
is that it is non-minimal and typically has a large state
dimension when p is moderate to large. This may be a prob-
lem for subsequent control design. Standard model reduction
techniques can be applied to reduce the order of this model.

3.2 A realisation algorithm

Realisation methods, initiated with the development of the
Ho–Kalman realisation algorithm [54–56], are the oldest
methods that could be classified under the subspace meth-
ods. Whereas earlier approaches depart from a set of Markov
parameters or impulse response parameters, later approaches
typically start with estimating predictor Markov parameters,
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or, equivalently, the predictor impulse response, very sim-
ilar to the VARX step described in Section 2.2.3. In fact,
the approach of estimating predictor Markov parameters fol-
lowed by a realisation step was already presented as early as
in 1993 [57]. The approach outlined here is a variation on the
Observer/Kalman Filter Identification (OKID) method [58].
In this approach, contrary to the Ho–Kalman approach, first
an estimate is obtained of the predictor impulse response,
using the fact that this response tends to zero after p steps.

The realisation method relies on forming an ‘extended
observability-times-controllability’ matrix. Let us first intro-
duce the extended observability matrix of the predictor and
innovation models

�̃(f ) =

⎡⎢⎢⎢⎣
C

CÃ
...

CÃ
f −1

⎤⎥⎥⎥⎦ , �(f ) =

⎡⎢⎢⎣
C

CA
...

CAf −1

⎤⎥⎥⎦
Given a ‘future’ window f > n, the extended observability-
times-controllability matrix �̃(f )K̃(p) can be constructed,
which has the following structure

�̃(f )K̃(p) =

⎡⎢⎢⎢⎢⎣
CÃ

p−1
B̄ CÃ

p−2
B̄ · · · CB̄

CÃ
p
B̄ CÃ

p−1
B̄ · · · CÃB̄

...
...

. . .
...

CÃ
p+f −2

B̄ CÃ
p+f −3

B̄ · · · CÃ
f −1

B̄

⎤⎥⎥⎥⎥⎦ (12)

Based on the earlier assumption that ‖Ã
p‖2 � 0, the same

approximation can be introduced here, resulting in

�̃(f )K̃(p) ≈

⎡⎢⎢⎢⎢⎣
CÃ

p−1
B̄ CÃ

p−2
B̄ · · · CB̄

0 CÃ
p−1

B̄ · · · CÃB̄
...

. . .
. . .

...

0 CÃ
f −1

B̄

⎤⎥⎥⎥⎥⎦ ≡
⎡⎢⎣�0

�1
...

⎤⎥⎦
(13)

Having estimated the predictor Markov parameters ̂CK̃(p),
it is straightforward to construct this matrix, by noting that
each block-row �i is obtained from the previous by shifting
it and padding it with zeroes. The first block-row �0 consists
of all predictor Markov parameters, that is, �0 ≡ CK̃(p).

Using the former definition of K̃(p) (3), it is possible to
derive a recursive expression, which provides the approx-
imate block-rows of the following extended observability-
times-controllability matrix

�(f )K̃(p) ≡

⎡⎢⎢⎣
H0

H1
...

Hf −1

⎤⎥⎥⎦ (14)

where the recursive expression is given by the authors
[53, 57]

Hj = �j +
j−1∑
τ=0

(CÃ
j−τ−1

K)Hτ , H0 = �0

Based on the assumption of minimality, which holds for both
the innovation and predictor representations, it immediately
IET Control Theory Appl., 2013, Vol. 7, Iss. 10, pp. 1339–1358
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follows that rank(�(f )K̃(p)) = n. In practice, the number of
non-zero singular values is not n, because of the fact that we
construct the matrix (13) using estimated parameters. Then,
an singular value decomposition (SVD) of �(f )K̃(p) can be
used to find approximations of �(f ) and K̃(p) and the order n

�(f )K̃(p) ≈ Un�nV�
n

so that we may take

�(f ) = Un, K̃(p) = �nV�
n

Estimates of the system matrices can then be obtained as
follows: C , B and K are simply read off from the appropriate
matrices

C = �(f )(1: ny, : )

[B − KD, K ] = K̃(p)(: , (p − 1)(nu + ny) + 1: p(nu + ny))

whereas A is found as the solution to the overdetermined
problem

�(f )(1: (s − 1)ny, : )A = �(f )(ny + 1: sny, : ) (15)

(using Matlab notation).

3.3 Predictor-based subspace identification
(PBSIDopt)

In predictor-based subspace identification, a predictor for
the state sequence is constructed. If an estimate of the
state sequence is known, the system matrices can be found
directly from two least-squares problems, similar to what is
done in the open-loop N4SID class of algorithms, based on
the following identities

X p+1,Np−1 = [
A B K

]⎡⎣X p,Np−1

U p,Np−1

Ep,Np−1

⎤⎦ (16)

Y p,Np = [
C D

] [X p,Np

U p,Np

]
+ Ep,Np (17)

On the basis of (4) it can be concluded that, neglecting
the first term, the product K̃(p)Z0,p,Np represents the state
sequence X p,Np . Unfortunately, this product cannot be esti-
mated directly. What is available is an estimate of the
parameters CK̃(p). As in the OKID algorithm in Section 3.2
we can construct the matrix in (13) using these param-
eters, now using a ‘future’ window f ≥ n (note that the
future window may now be equal to the system order; also
see Section 3.5.2). This matrix is used in the PBSIDopt

algorithm, whereas the standard PBSID algorithm makes use
of the full matrix in (12).

Remark 3.1: Following the estimation of the Markov param-
eters (9) we only have available the Markov parameters
required to construct the matrix in (13). It is also pos-
sible, however, to construct the full matrix in (12), by
solving a sequence of f shifted versions of (9) of increas-
ing order p, p + 1, . . .. This is detailed in, for example,
[2]. In [2, 38] it was shown that the ‘optimised’ version
described here results in a lower variance than the standard
PBSID algorithm.
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Thus, having constructed the matrix �̃(f )K̃(p), the product
�̃(f )K̃(p)Z0,p,Np can be calculated. This product corresponds,
by definition, to the extended observability matrix times the
state sequence: �̃(f )X p,Np . Using an SVD, the order of the
system and the state sequence can then be estimated

�̃(f )X p,Np = �̃(f )K̃(p)Z0,p,Np = Un�nV�
n (18)

Note that it is possible to include a left weighting matrix in
this equation. Such a weight may affect the variance of the
estimated state sequence and the resulting identified system.
The choice and design of such weightings has been the topic
of many discussions, see for example, [2, 24, 59, 60].

The state sequence is recovered (up to a similarity trans-
formation) as

X̂ p,Np = �nV�
n (19)

In practice, the matrix �̃(f )K̃(p) is constructed using esti-
mated parameters. Hence, the SVD in (18) will not exactly
contain n non-zero singular values and we will only obtain
an estimate of the true state sequence X̂ p,Np . Note that the
choice of the future window f receives further attention in
Section 3.5.2.

Subsequently, (16) and (17) are solved in a least-squares
sense. First, (17) is solved and subsequently its residual Êp,Np

is used in the solution of (16).

3.3.1 Variants: Several variants of the PBSIDopt

algorithm can be found in the literature, some of which have
already been mentioned. The PBSIDopt is asymptotically
equivalent [2] to the SSARX algorithm proposed by Jansson
[14]. Several other modifications are discussed in [61].

3.3.2 Recursive implementation: The PBSIDopt can
be also employed for on-line applications, by working out
recursive implementations. The problem has been studied
in the literature by a number of authors and a template for
recursive closed-loop subspace identification can be outlined
as follows, along the lines of the general ideas proposed in
[62] and of the algorithm in [63]):

• Recursive update of the solution of the least-squares prob-
lem (9), using a conventional recursive least squares (RLS)
scheme.
• Update of the estimate of the state sequence, that is, of
the state estimate given by (19). In this respect, note that this
is the most critical step in the implementation, as one has to
ensure that the recursive state estimates are expressed in a
consistent state-space basis. One way of guaranteeing this is
given by, for example, the scheme proposed in [63], which
is based on the so-called propagator method for the recursive
update of the state sequence (see also [64] for details).
• Recursive estimate of the state-space matrices of the
system, that is, update of the solution of the least-squares
problem (16), again by means of RLS.

3.4 Closed-loop MOESP

In Section 2.2.3, it was shown that besides the Markov
parameters, an estimate of the innovation sequence can be
obtained. If we revisit the innovation model (1) an estimate,
{êk}N−1

k=p , of the innovation sequence {ek}N−1
k=p is now available

(although not over the full data horizon k = 0, . . . , N − 1).
First obtaining an estimate of the innovation sequence results
in a class of ‘innovation estimation’ methods, first intro-
duced by Qin and Ljung and leading to their PARSIM
1345
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method [65]. Having knowledge of the innovation sequence,
we are effectively left with a deterministic identification
problem to which solutions are well-known. The determin-
istic MOESP algorithm is one such algorithm. The method
described here, 67, was presented in [5, 66, 67] and is
inspired by and in many respects similar to [3, 4]. In par-
ticular, Qin and Ljung [3] suggest a recursive procedure to
estimate the innovation sequence and Di Ruscio [4] suggests
the same method of estimating the innovation sequence but
proceeds using the DSR method (see Section 3.4.4 for some
more details).

3.4.1 Estimating the extended observability matrix
�(f ): Referring to [43] for a detailed derivation, we con-
sider the following data equation in the MOESP algorithm

Y p,f ,Nf = �(f )X p,Nf + H (f )(B, D)U p,f ,Nf + H (f )(K , 0)Ep,f ,Nf

with Nf = N − f − p + 1. This is also the data equation con-
sidered in the deterministic MOESP setting, since the signals
constituting U p,f ,Nf and Ep,f ,Nf are both at our disposal and no
further stochastic disturbances are present. The influences of
the input and the innovation can be eliminated using orthog-
onal subspace projection. For this purpose, we construct the
orthogonal projection matrix

�⊥
Zp,f ,Nf

= I − Z†
p,f ,Nf

Zp,f ,Nf

where the definition Zp,f ,Nf =
[

U p,f ,Nf

Ep,f ,Nf

]
is used. Applying

this projection results in

Y p,f ,Nf �
⊥
Zp,f ,Nf

= �(f )X p,Nf �
⊥
Zp,s,Nf

In practice, this projection may be obtained by performing
an RQ factorisation of the input and output data, which is
numerically much more efficient and stable than evaluating
the large projection matrix[

Zp,f ,Nf

Y p,f ,Nf

]
=
[

R11 0
R21 R22

] [
Q1
Q2

]
Using the properties of the RQ factorisation, we can then
equivalently write

Y p,f ,Nf �
⊥
Zp,f ,Nf

= �(f )X p,Nf �
⊥
Zp,f ,Nf

= R22Q2

If the input and noise sequences are persistently exciting
of at least order fnu and fny, respectively, for the input and
innovation signals [43], the following holds, since then the
column space of the observability matrix is preserved in
Y p,f ,Nf �

⊥
Zp,f ,Nf

after projection

range(�(f )) = range

(
lim

N→∞
1√

N − p
Y p,f ,Nf �

⊥
Zp,f ,Nf

)
= range

(
lim

N→∞
1√

N − p
R22

)
Thus, due to the fact that Q2 has full row rank, the column-
space of R22 serves as a basis for the column space of the
extended observability matrix Of . Performing an SVD of
R22 gives

R22 = Un�nV�
n

where n is the number of dominant singular values and also
the order of the underlying innovation system. The columns
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of Un provide a basis for �(f ). A gap between successive
singular values will often indicate the order of the system
(see [68] for more details). As in the PBSIDopt method, the
SVD can be augmented with weights, which may change
the variance on the estimated observability matrix, see for
example, the ‘unifying theorem’ in [24, 41, 59, 60].

3.4.2 Estimating the A and C matrices: Estimates
of the A and C matrices can subsequently be obtained from
Un. Given the structure of �(f ), the C matrix is found as the
first ny rows of Un. A can be found as the solution to the
overdetermined problem

Un(1: (f − 1)ny, : )A = Un(ny + 1: fny, : ) (20)

(using Matlab notation). The matrices B, D and K can
be computed in a second step by solving a least-squares
problem as shown in the next subsection.

3.4.3 Estimating B, D, K and the initial state: Based
on the system description (1), the output at time k can be
written as

yk = CAkx0 +
k−1∑
τ=0

CAk−τ−1 (Buτ + Keτ ) + Duk + ek

Applying the vectorisation operator and exploiting a prop-
erty of the Kronecker product [69], this can be rewritten as

yk = [
�

x0
k �B

k �K
k �D

k

]︸ ︷︷ ︸
�k

⎡⎢⎣ x0

vec(B)
vec(K)
vec(D)

⎤⎥⎦
︸ ︷︷ ︸

�

+ek (21)

where we have defined

�
x0
k = CAk−1, �B

k =
k−1∑
τ=0

u�
τ ⊗ CAk−τ−1

�K
k =

k−1∑
τ=0

e�
τ ⊗ CAk−τ−1, �D

k = u�
k ⊗ I ny

Equation (21) is a linear expression in the unknown ele-
ments of x0, B, D and K , which can be solved for the
parameters in a least-squares sense with the available data
set {uk , yk , ek}N−1

k=p . For this purpose, define �k and � as in
(21). Then the least-squares problem can be stated as

�̂ = arg min
�

N−1∑
k=p

‖yk − �k�‖2
2 = arg min

�
‖Y − ��‖2

2

which can be solved efficiently using a QR factorisation
[48]. It must be noted that, although the described way to
find B, D, K and the initial state is conceptually simple, it is
computationally prohibitive because of the Kronecker prod-
ucts involved. Much more efficient procedures exist to find
the matrix �, which avoid evaluation of Kronecker prod-
ucts for each k . Such procedures are detailed in [67, 70].
The approach presented here must be modified slightly in
case the system is open-loop unstable; see [8].
IET Control Theory Appl., 2013, Vol. 7, Iss. 10, pp. 1339–1358
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3.4.4 Variants: Here, we have considered one possible
‘innovation estimation’ algorithm, which we have chosen
for its simplicity. One variant is the first innovation esti-
mation algorithm: the PARSIM method presented in [3],
where the innovation and Markov parameters are estimated
in a recursive fashion. Subsequently, the DSR_e algorithm
was presented in [71], [72, Chapter 6.2] and [4]. In the
DSR_e algorithm the innovation sequence is estimated in
the same way as described in this section. The deterministic
subspace identification problem that remains is then solved
using the DSR algorithm [72–74], which uses a slightly dif-
ferent data equation than the MOESP method. We estimate
the extended observability matrix using the deterministic
MOESP method [43, 66].

Remark 3.2: In the four previous subsections, estimates have
been obtained for the matrix K using least-squares tech-
niques. Although these estimates minimise the appropriate
least-squares criteria, they do not automatically satisfy the
requirement of having a stable predictor and thus are not
proper Kalman gains. If the identified models are to be used
in the context of observing or prediction, this is a crucial
property. An alternative way to obtain K is by solving a dis-
crete algebraic Riccati equation (DARE). Such approaches
are described in [40, 41, 43].

3.5 User choices and other issues

Having paid attention to the main algorithmic issues in
the previous sections, this section focuses on some of the
important user choices and related issues in the closed-loop
subspace algorithms. Many of these choices and issues have
been studied in the literature and it remains an area of active
research with several open problems.

3.5.1 Past window: Algorithmically, the main effect of
the past window size p is to ensure that the neglected term
Ã

p
in (5) is so small that it can be neglected. One should

keep in mind, however, that the number of parameters esti-
mated in the least-squares problem (9) is pny(nu + ny) +
nynu and hence grows linearly with p, which is the order of
the VARX model (7). Thus, when using finite-length data
sequences the variance will grow and there is a risk of over-
fitting. Order selection tools such as the Akaike Information
Criterion [1] could be used to avoid such issues in selecting
the order of the VARX model (7). Cross-validation between
data sets is also an option.

It may also be advantageous to employ regularisation
in the least-squares regression problem, for example, using
Tikhonov regularisation that was pioneered in [75] and has
been implemented in [76], or 	1-regularised regression. The
bias because of a finite p can be remedied by using a Vector
ARMAX structure, as was proposed in [77]. This approach
was shown to work well when the order of the identified
system corresponds exactly to the order of the ‘true’ system.

Asymptotic consistency results, for example, for p → ∞,
can be found in [2, 23, 60, 78], while the effect of choosing a
finite p remains hard to quantify for general situations. First
results on the statistical behaviour of subspace algorithms as
a function of the window size p were reported in [60] where
the authors study the effect of p on the variance of the esti-
mated system’s invariants for white inputs. Chiuso [2] also
discusses the effect of p in the context of the recent closed-
loop subspace methods (PBSID). It is shown that p must be
chosen in relation to the number of available samples N to
result in the statistically optimal choice. Finally, Kuersteiner
IET Control Theory Appl., 2013, Vol. 7, Iss. 10, pp. 1339–1358
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[78] focusses on how the infinite-order ARX model that
consistently describes the underlying system (i.e. (5) when
letting p → ∞) can be approximated by an ARX model of
finite order and how p must be chosen to achieve certain
statistical properties.

3.5.2 Future window: The choice of the future win-
dow in the PBSIDopt algorithm in Section 3.3, constrained
by f ≥ n, affects the variance of the invariants associated
with the identified system (e.g. the elements of the system
matrices in a certain fixed basis, pole locations or the transfer
function). In particular, it can be shown for certain classes
of inputs that the variance on these invariants is a non-
increasing function of the future window. These issues are
extensively discussed in [46]. Tools to compute the asymp-
totic variance on the system matrices estimated with the
PBSIDopt method are discussed in [79]. For the choice of the
subspace dimension parameters in the CLMOESP algorithm,
we refer to results for the classical subspace algorithms
[60, 80, 81].

3.5.3 Incorporating prior knowledge: In recent
years, the possibility of incorporating certain prior knowl-
edge on the system to be identified has regularly received
attention. For instance, it is possible to enforce stability or
positive realness of the identified models. In [42, 82], it is
shown how the least-squares regressions (cf. (15), (16) and
(20)) can be modified in a simple way by adding a regulari-
sation term. The amount of regularisation required to achieve
a specific spectral radius of A, or positive realness of the sys-
tem can be determined by solving a generalised eigenvalue
problem. The former has been implemented in the PBSID
toolbox [76]. In [83], it is shown how linear matrix inequal-
ities can be formulated to constrain the eigenvalues of the
identified system to lie in certain convex regions. Finally,
in [84] some steps are made towards prescribing a certain
model structure (e.g. OE, ARMAX, etc.) in subspace meth-
ods. Constraints can also be added to incorporate certain
prior information on the input–output behaviour, such as
the steady-state gain, as discussed in [85, 86]. In a simi-
lar vein, research has been directed towards allowing more
accurate estimation of finite-order models in cases where this
is not trivial, for instance using nuclear norm regularisation
[87, 88].

4 Continuous-time identification framework

In this section, we consider the continuous-time formula-
tion of the identification problem that was addressed in
Section 2 for discrete-time systems. As in the discrete-time
case, the underlying assumption is that the continuous-time
system to be identified is a finite-dimensional, linear, time-
invariant system, subject to measurement and/or process
noise. In the continuous-time identification problem, we
consider the following continuous-time LTI system

�c :

⎧⎪⎨⎪⎩
dx(t) = Acx(t) dt + Bcu(t) dt + dw(t)

dz(t) = Ccx(t) dt + Dcu(t) dt + dv(t)

y(t)dt = dz(t)

(22a)

(22b)

(22c)

where (Ac, Bc, Cc, Dc) are the continuous-time counterparts
of (A, B, C , D). In the following it will be assumed that
(Ac, Cc) is observable and that (Ac, [Bc, Q1/2

c ]) is control-
lable. The process noise w(t) and measurement noise v(t)
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are described as Wiener processes with covariance of the
increments given by

E

{[
dw(t)
dv(t)

] [
dw(t)
dv(t)

]�}
=
[

Q S
S� R

]
dt

Note that the definition of the model in terms of incre-
ments is because of well-known technical difficulties in
the definition of continuous-time white noise processes with
finite variance. Formally, such processes do not exist. Hence,
the noises are modelled as Wiener processes in terms
of independent increments. The reader is referred to [36,
Sec. 3.3] and [89, Appendix 1] for more details.

The continuous-time model �c also admits an innovation
representation given by

Pc :

⎧⎪⎨⎪⎩
dx(t) = Acx(t) dt + Bcu(t) dt + K cde(t)

dz(t) = Ccx(t) dt + Dcu(t) dt + de(t)

y(t)dt = dz(t)

(23a)

(23b)

(23c)

where K c ∈ Rn×ny is the Kalman gain.
We can now formulate the continuous-time identification

problem, which is very similar to the discrete-time version:

Problem 4.1 Continuous-time subspace identification prob-
lem: Based on a finite set of (not necessarily uniformly)
sampled input and output data {uk , yk}N−1

k=0 obtained from
system �c, estimate the order n of the continuous-
time system Pc and the associated system matrices
(Ac, Bc, Cc, Dc, K c) up to a similarity transformation.

4.1 Preliminaries

One of the main issues in continuous-time identification is
the need to compute high-order derivatives of measured
input–output data, which arise from the continuous-time
formulations of the data equations used in subspace iden-
tification. Obviously, numerical differentiation is not fea-
sible in this context. In [90, 91] the combination of the
MOESP algorithm with filtering methods to avoid the need
to compute numerical derivatives of input–output signals
was proposed. When focusing on the closed-loop case, two
approaches have been studied in the literature to circum-
vent this problem. Both these approaches rely on signal
transformations, either through filtering or projections, asso-
ciated with the class of Laguerre orthogonal filters. We will
first introduce the notation and definitions required for the
subsequent derivations.

In the following, let L2(0, ∞) denote the space of square
integrable and Lebesgue measurable functions with inner
product 〈f , g〉 = ∫∞

0 f (t)g(t) dt, for f , g ∈ L2(0, ∞). The
space H2 is the closed subspace of L2(jR) with func-
tions analytic in the open right half plane. The spaces
L2(0, ∞) and H2 are related by the Fourier transform,
that is, if U ∈ H2, u = F−1{U } is in L2(0, ∞) and vice
versa. A scalar function w(s) is called inner if w(jω) ∈ H2,
such that |w(jω)| = 1 almost everywhere on the imaginary
axis. Finally, we denote by �w the multiplication operator
L2(0, ∞) �→ L2(0, ∞) defined by

�wu(t) = F−1{wF{u(t)}}
In the following, we make use of the first-order inner transfer
function

w(s) = s − a

s + a
(24)
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with a > 0. It can be shown that w(s)H2 is a proper closed
subspace of H2, the orthogonal complement of which is
denoted as S = H2 � w(s)H2, that

L0(s) = cw

s + a
=

√
2a

s + a

is a basis of the one-dimensional subspace S and that the
set

{L0, L0w, . . . , L0wi, . . .}
is an orthonormal basis for H2. Equivalently, letting
	0 = F−1{L0} (i.e. 	0 is the impulse response of L0), the
set

{	0, �w	0, . . . , �i
w	0, . . .} (25)

is an orthonormal basis for L2(0, ∞).
Making use of these definitions, the transfer function of

the ith Laguerre filter (of order i + 1) may be defined as

Li(s) = wi(s)L0(s) = √
2a

(s − a)i

(s + a)i+1
(26)

In accordance with [36], we will also define the Laguerre-
like filters

Li(s) = 2a
(s − a)i

(s + a)i+1
= (1 − w)wi (27)

These Laguerre-like filters are introduced for notational sim-
plicity and can be used since the normalising constant

√
2a

is immaterial to the subsequent results.
In the time domain, we denote with wi(t) the impulse

response of the concatenation of i all-pass filters (24) and
by [wiu](t) the convolution of u(t) and wi(t), that is,
[wiu](t) ≡ ∫t

0 wi(t − τ)u(τ )dτ . Similarly, li(t) is the impulse
response of the ith Laguerre-like filter (27) and [liu](t)
denotes the convolution of u(t) and li(t), that is, [liu](t) ≡∫t

0 li(t − τ)u(τ ) dτ .

4.2 A Laguerre filtering approach

The first approach relies on the idea, presented in [36, 92],
of resorting to the bilinear transformation associated with a
first-order all-pass filter in order to convert the derivative
operation into a low-pass filtering operation based on the
class of Laguerre filters. It can be shown that a data equation
can be derived, which is similar to the one for discrete-time
systems and hence subspace identification techniques can be
applied.

On the basis of the definitions in the previous subsec-
tion, the innovation model (23) can be transformed to the
‘all-pass’ domain by means of the Laguerre-like filters [36,
Lemma 3.4], resulting in the equivalent model

[wx](t) = Awx(t) + Bw[l0u](t) + K w[l0e](t) + F1x0l0(t)

[l0y](t) = Cwx(t) + Dw[l0u](t) + [l0e](t) + F2x0l0(t)

where the state-space matrices are given by

Aw = (Ac + aI )−1(Ac − aI )

Bw = (Ac + aI )−1Bc

Cw = 2aCc(Ac + aI )−1

Dw = Dc − Cc(Ac + aI )−1Bc

F1 = (Ac + aI )−1

F2 = Cc(Ac + aI )−1

(28)
IET Control Theory Appl., 2013, Vol. 7, Iss. 10, pp. 1339–1358
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and x0 is the initial state of the original continuous-time
system. Just as for the original system, [l0e](t) may be elim-
inated from the state equation to result in a one-step-ahead
predictor

[wx](t) = Ãwx(t) + B̃w[l0u](t) + K w[l0y](t) + F̃wx0l0(t),
(29a)

[l0y](t) = Cwx(t) + Dw[l0u](t) + [l0e](t) + F2x0l0(t),
(29b)

where we have introduced Ãw ≡ Aw − K wCw, B̃w ≡ Bw −
K wDw and F̃w ≡ F1 − K wF2.

Considering system (29) in the all-pass domain, we can
follow an approach similar to the one in Section 2.2 for the
discrete-time problem to estimate the Markov parameters of
(29). We first redefine some of the matrices defined before
in Section 2.1. We introduce a stacked sample of input and
output data [liz](t) according to

[liz](t) =
[[liu](t)
[liy](t)

li,t

]

The stacked vector z(p)

i (t) is defined as

z(p)

i (t) = [[li−pz](t)�, [li−p+1z](t)�, . . . , [li−1z](t)�]�
where p denotes the ‘past window’ size. Note that the indices
{i − p, . . . , i − 1}, which corresponded to time shifts in the
discrete-time case, now denote repeated filtering operations
on the input–output data.

We also define a reversed extended controllability matrix
K̃(p)

K̃(p)
w =

[
Ã

p−1

w B̄w, Ã
p−2

w B̄w, . . . , B̄w

]
(30)

where we have defined B̄w = [B̃w, K w, F̃wx0] for brevity.
Starting from some initial state [wx](t), the state equation
of (30) can be iterated, resulting in the expression

[wpx](t) = Ã
p

wx(t) + K̃(p)
w z(p)

p (t)

Thus, under the assumption that Ãw is stable, we can express
the outputs of the system in terms of repeatedly filtered
input–output data as

[lpy](t) = CwK̃(p)
w z(p)

p (t) + Dw[lpu](t) + F2x0lp(t) + [lpe](t)
(31)

Remark 4.1: Note that, as in the discrete-time algorithm, a
shift invariance property can be exploited to obtain shifted
versions of this equation. That is, we may obtain

[lp+j−1y](t) = CwK̃(p)
w z(p)

p+j−1(t) + Dw[lp+j−1u](t)
+ F2x0lp+j−1(t) + [lp+j−1e](t) (32)

for an arbitrary j. In this discussion, we will not use these
shifted versions and the reader is referred to [35] for details
on how these can be exploited.

Considering now the (not necessarily uniformly) sam-
pled input–output data of the system at instants t ∈
{t0, t1, . . . , tN−1} and realising that (31) holds for all the
sample instants, it follows we can estimate the parameters
IET Control Theory Appl., 2013, Vol. 7, Iss. 10, pp. 1339–1358
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CwK̃(p)
w and Dw in a least-squares problem. For this purpose,

we define

Zw
0,p,N = [

z(p)
p (t0), z(p)

p (t1), . . . , z(p)
p (tN−1)

]
and

Y w
p,N = [[lpy](t0), [lpy](t1), . . . , [lpy](tN−1)

]
where the subscript p indicates filtering with the pth
Laguerre-like filter and the subscript N indicates the num-
ber of columns. The matrices U w

p,N , Ew
p,N , �p,N are defined

likewise. Then, we can formulate the data equation

Y w
p,N = CwK̃(p)

w Zw
0,p,N + DwU w

p,N + F2x0�p,N + Ew
p,N

Based on this data equation, we may obtain least-squares
estimates of CwK̃(p)

w and Dw.

4.2.1 Continuous-time PBSIDopt: Using the esti-

mated Markov parameters ̂CwK̃(p)
w , we can construct a pre-

dictor for the state in a very similar way as for the discrete-
time PBSIDopt algorithm; see Section 3.3. To this end, we
form the extended observability-times-controllability matrix

�̃(f )
w K̃(p)

w =

⎡⎢⎢⎢⎢⎢⎣
CwÃ

p−1

w B̄w CwÃ
p−2

w B̄w · · · CwB̄w

0 CwÃ
p−1

w B̄w · · · CwÃwB̄w

...
. . .

. . .
...

0 CwÃ
f −1

w B̄w

⎤⎥⎥⎥⎥⎥⎦
From the previous derivations, it follows that the product

�̃(f )
w K̃(p)

w Zw
0,p,N ≡ �̃(f )

w X w
p,N � Un�nV�

n

represents, by definition, the product of the extended observ-
ability matrix of the all-pass domain model (29) and the state
sequence and hence we can estimate the state sequence by
means of an SVD

X̂
w

p,N � �nV�
n

Note, in this context, that X w
p,N is defined as

X w
p,N = [[wpx](t0), [wpx](t1), . . . , [wpx](tN−1)

]
In a similar way, we can estimate the state sequence X w

p+1,N
from the SVD

�̃(f )
w K̃(p)

w Zw
1,p+1,N ≡ �̃(f )

w X w
p+1,N � Un�nV�

n

Having estimated the state sequences X w
p,N and X w

p+1,N , the
state-space matrices (Aw, Bw, Cw, Dw, K w) can be estimated
in a least-squares sense, making use of the relations

X w
p+1,N = [

Aw Bw K w

]⎡⎢⎣X w
p,N

U w
p,N

Ew
p,N

⎤⎥⎦
Y w

p,N = [
Cw Dw

] [X w
p,N

U w
p,N

]
+ Ew

p,N

Those matrices can be converted to the continuous-time
state-space matrices (Ac, Bc, Cc, Dc, K c) by means of the
relations in (28).
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4.2.2 Continuous-time closed-loop MOESP: Just
as for the discrete-time algorithm, we can exploit the knowl-
edge of the estimated innovation matrix E0,N and apply the
ordinary MOESP method, but now for continuous-time sys-
tems. In the derivation presented here, we use the Laguerre
filtering approach. It was shown in [36] that we can for-
mulate an all-pass domain data equation on the basis of the
all-pass domain model (29)

Y w
0,f ,N = �(f )

w X w
0,N + H (f )(Bw, Dw)U w

0,f ,N

+ H (f )(K w, 0)Ew
0,f ,N

+ H (f )(K 1x0, K 2x0)�0,f ,N

Just as in the case of the discrete-time CLMOESP algorithm,
we can use orthogonal subspace projection to eliminate the
influence of the inputs, noise and filtered initial states.

To this end, we compute the RQ factorisation⎡⎢⎢⎣
⎡⎣U w

0,N
Ew

0,N
�0,N

⎤⎦
Y w

0,N

⎤⎥⎥⎦ =
[

R11 0
R21 R22

] [
Q1
Q2

]

Using the properties of the RQ factorisation, we can then
equivalently write

Y w
0,N Q�

2 = �(f )
w X w

0,N Q�
2

If the filtered input and noise sequences are persistently
exciting of at least order fnu and fny, respectively, for the
input and innovation signals [43], the following holds

range(�(f )
w ) = range

(
lim

N→∞
1√
N

R22

)
and hence we can estimate the extended observability matrix
of the all-pass domain model from which, in turn, Aw and Cw

can be estimated. A least-squares problem can be formulated
to estimate the remaining system matrices Bw, Dw and K w.
We refer the reader to [36, Section 3.7] for details.

4.3 A Laguerre projection approach

A second approach is based on the results in [93, 94]. Based
on the results in [93], the continuous-time innovation model
(23) can be converted to a discrete-time equivalent model as
follows. Apply to the input, output and innovation signals
of (23) the transformations

ũ(k) =
∫∞

0

�k
w	0(t)u(t) dt

ỹ(k) =
∫∞

0

�k
w	0(t)y(t) dt

ẽ(k) =
∫∞

0

�k
w	0(t) de(t)

These transformations project the signals onto the kth
element �k

w	0(t) of the orthonormal Laguerre basis (25).
Then, it can be shown [93] that the transformed system has
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the state-space representation

ξ(k + 1) = Aoξ(k) + Boũ(k) + K oẽ(k)

ỹ(k) = Coξ(k) + Doũ(k) + ẽ(k)

where the state-space matrices are given by

Ao = (Ac − aI )−1(Ac + aI )

Bo = √
2a(Ac − aI )−1Bc

Co = −√
2aCc(Ac − aI )−1

Do = Dc − Cc(Ac − aI )−1Bc

(33)

Since the following steps are to a large extent consistent
with the steps followed in the Laguerre filtering approach
we only give a sketch of the procedure for the Laguerre
projection approach. Considering the sampled input–output
data of the system at instants t ∈ {t0, t1, . . . , tN−1}, we apply
the following transformations

ũi(k) =
∫∞

0

(
�k

w	0(τ )
)

u(ti + τ) dτ

ỹi(k) =
∫∞

0

(
�k

w	0(τ )
)

y(ti + τ) dτ

ẽi(k) =
∫∞

0

(
�k

w	0(τ )
)

de(ti + τ)

(34)

The transformed system then has the state-space representa-
tion

ξi(k + 1) = Aoξi(k) + Boũi(k) + K oẽi(k), ξi(0) = x(ti)

ỹi(k) = Coξi(k) + Doũi(k) + ẽi(k) (35)

If we now define

z̃i(k) =
[

ũi(k)
ỹi(k)

]
Ão = Ao − K oCo

B̃o = Bo − K oDo

and B̄o = [B̃o, K o], we can develop a very similar algorithm
as in Section 2.2 to compute estimates of the Markov param-
eters of (35). Subsequently, we can estimate the system
matrices (Ao, Bo, Co, Do, K o) using the PBSIDopt approach,
which can subsequently be converted to the continuous-time
system matrices by means of the relations (33). For details
the reader is referred to [35, 93].

Remark 4.2: As remarked in [95] the above described pro-
jections based on Laguerre basis functions can only be
computed in an approximate sense as the indefinite integrals
in (34) need to be truncated to finite intervals. In order to
circumvent this difficulty, a novel set of basis functions, for
which it can be proved that they are compactly supported,
has been proposed in the same paper, where it has been
shown that for suitably chosen scalars α0, α1, . . ., αρ (see
IET Control Theory Appl., 2013, Vol. 7, Iss. 10, pp. 1339–1358
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[95] for details) the functions

	̃k(t) =
ρ∑

i=0

αi�
k
w	0(t − iτ) (36)

can be used to define the system transformations

ũ(k) =
∫∞

0

	̃k(t)u(t) dt

ỹ(k) =
∫∞

0

	̃k(t)y(t) dt (37)

ẽ(k) =
∫∞

0

	̃k(t) de(t)

with the property that the signals obtained with the trans-
formations (37) satisfy the discrete-time system (35) for
suitably chosen initial states. The support of the functions is
compact if ρ > k .

4.4 Implementation issues

Some additional comments related to the implementation
and the choice of the main parameters are in order.

4.4.1 Impact of discretisation: First note that the
identification algorithms outlined in the previous sections
assume that continuous-time filtering of the input–output
variables can actually be performed (Section 4.2) or that
continuous-time projections of the input–output data on the
Laguerre basis can be computed exactly (section 4.3). This
is obviously not the case, so suitable discretisation schemes
for the considered Laguerre filters and projection operations
must be devised.

An analysis of the impact of filter discretisation on the
performance of continuous-time SMI algorithms has been
carried out in [36]. In particular, it has been shown that
a bias term in the estimation of the state-space matrices
appears, that is, the discrete-time implementation of the fil-
ters leads to a perturbation of the estimated column space of
the observability matrix of the system, which in turn leads to
bias in the estimated state-space matrices. The perturbation
depends on the choice of sampling interval (faster sampling
implies smaller bias) and on the conditioning of the system
under study (the computed upper bound in the perturbation
is inversely proportional to the smallest ‘system’ singular
value in the decomposition leading to the estimate of the
observability subspace). Similar issues are expected to arise
in the operation of the algorithm proposed in Section 4.2;
however, a detailed analysis of the effect of filter discretisa-
tion on the bias of the computed estimates of the state-space
matrices is not yet available in the literature. As reported in
[35], the Laguerre filters used in the implementation of the
algorithm can be implemented in discrete-time by means of a
conventional bilinear (Tustin) transformation. Similar com-
ments apply to the data projections on the Laguerre basis
adopted in the derivation of the algorithm of Section 4.3. In
[35], the approximate implementation

ũi(k) =
∫∞

0

�k
w	0(τ )u(ti + τ) dτ =

∫∞

ti

�k
w	0(τ − ti)u(τ ) dτ

�
∫ tN/2+ti

ti

�k
w	0(τ − ti)u(τ ) dτ (38)

and similarly for ỹi(k), has been proposed. In this imple-
mentation the indefinite integral has to be computed over a
IET Control Theory Appl., 2013, Vol. 7, Iss. 10, pp. 1339–1358
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sliding window of length equal to half of the duration of the
available dataset.

4.4.2 Choice of parameters: Finally, concerning the
choice of the parameters f and p, the same guidelines as in
the case of the discrete-time PBSID algorithm apply. First
of all, it is common practice to choose f = p, for the sake
of simplicity. Then, one has to keep in mind that in view of
the need to construct the extended controllability and observ-
ability matrices, one has to ensure that p ≥ n, as a minimum.
In addition, p must be sufficiently large to ensure that the
term Ā

p

wx(t) is negligible (unfortunately, this can be verified
‘a posteriori’ only). On the other hand, specific constraints
on the choice of p arise because of the need of performing
the filtering/projection operations over finite datasets using
filters of order up to 2p. Indeed, it is easy to verify that the
impulse responses of the Laguerre and Laguerre-like filters
defined in (26) and (27) have a settling time, which is an
increasing function of the filter order k . Since the imple-
mentation of both algorithms requires the computation of
convolutions/correlations with the impulse response of such
filters over time horizons determined by the length of the
available dataset, the duration of the experiment provides an
upper bound for the maximum value of the settling time of
the highest order filter. An approximate value for the settling
time of the filter

Lk(s) = √
2a

(s − a)k

(s + a)k+1

can be written as (5 + 2k)/a, which for k = 2p gives (5 +
4p)/a. Therefore denoting with T the duration of the avail-
able dataset and letting τ = 1/a, one has the rough guideline
p ≤ (aT − 5)/4 � (1/4)(T/τ) − 1 for the filtering approach
and p ≤ (aT/2 − 5)/4 � (1/8)(T/τ − 1) for the projection
approach (the latter in view of the above-described imple-
mentation (38) for the projection operation).

4.4.3 Recursive implementation: In discrete-time
RSMI schemes the recursion is implemented directly with
respect to the new discrete input–output sample acquired
at the current sampling time. When dealing with the cor-
responding continuous-time counterpart the first step to be
carried out is the (approximate) computation of the projec-
tions described in Section 4.3. In this respect, since the index
k in the transformed system represents the order of the basis
function on which the data has been projected, while the
index i is related to the sampling instants ti, the arrival of
a new input–output sample leads to the addition of a new
time instant at which the projections have to be computed,
which leads, in turn, to a new column to be added to the data
matrices. In order to compute the projections when dealing
with the conventional (i.e. with infinite support) Laguerre
filters, the following approximation is introduced

ũi(k) =
∫∞

0

�k
w	0(τ )u(ti + τ) dτ

=
∫∞

ti

�k
w	0(τ − ti)u(τ ) dτ

�
∫ tF +ti

ti

�k
w	0(τ − ti)u(τ ) dτ

where tF is the instant where the impulse response of the
filter of maximum order can be considered approximately
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equal to zero. In other words

tF =arg max
t

t

s.t. �2p−1
w 	0(t) ≤ ε

where ε is a sufficiently small number. On the other hand,
the approximation can be avoided by modifying the basis
functions as described in Remark 4.2. In particular, the mod-
ified functions have compact support if ρ > k; therefore in
the following it will be assumed that ρ > p + f .

As far as the actual implementation of the recursive
PBSIDopt algorithm is concerned, the approach outlined in
Section 3.3.2 can be followed; see [96] for a discussion of
the overall recursive algorithm.

5 Evaluation

In this section, the closed-loop subspace identification meth-
ods discussed in the previous sections are applied to
a number of examples. First, we consider two numeri-
cal examples. The first example deals with a number of
simple closed-loop systems with different characteristics
and the second example discusses the differences between
PBSIDopt and CLMOESP in the case of ill-conditioned
data because of poor excitation. Next, we consider two
experimental examples. In the third example, we evaluate
the performance of the main discrete-time algorithms on
datasets obtained from a flexible beam and in the fourth
example we identify continuous-time models of this same
system.

5.1 Numerical example: simple closed-loop
configurations

In this example, we apply the different methods to a series
of closed-loop identification problems taken from [23]. The
closed-loop system shown in Fig. 3 is simulated with the
transfer functions from Table 1. e1 and e2 are unit variance
zero-mean white signals. Second-order models are identified
using 1000 samples. For each of the systems the Akaike
information criterion in the VARX step was evaluated for
a range of p. Based on these results, p = 4 was suggested
for each system and f = p = 4 was used subsequently. Each
system is identified for 1000 Monte Carlo simulations using
the four different methods. The distributions of the identified
pole locations, transfer functions and variance-accounted-for
(VAF) (VAF = max{0, (1 − (var(y − ŷ)/var(y))) × 100%})
[43] on validation data were studied for the combinations in
Table 1. It is important to note that these systems are first

Fig. 3 Closed-loop identification setting from [23]
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Table 1 Systems defined in [23]

Ex. F (z) H(z) G(z) K (z)

1
0.3

z − 0.7
−1

z + 0.5
z

1

2
2.5

z − 3
−1

z + 0.5
z

1

3
2.5

z − 3
−1

z + 0.999
z

0.2(z + 0.999)

z − 0.99

4
2.5

z − 3
−1

z + 0.999
z

1

Table 2 Mean and standard deviation of the VAF on validation
data for the four examples and four methods over 1000
experiments

Ex. Direct CLMOESP PBSIDopt OKID

1 mean 93% 97% 97% 97%
std 3.7% 2.6% 2.5% 2.7%

2 mean 99% 100% 100% 100%
std 0.5% 0.4% 0.4% 0.4%

3 mean 100% 67% 100% 96%
std 0.1% 43% 0.1% 6.8%

4 mean 98% 99% 99% 100%
std 1.3% 0.6% 1.7% 0.5%

order, single-input–single-output systems. Therefore they
may not highlight some of the aspects that distinguish the
different methods when they are applied to MIMO systems
with an order that is not clearly defined.

For reasons of space, we have not included figures show-
ing the variance of the identified models. Instead, we have
included Table 2 showing the mean and standard deviations
of the VAF obtained with validation data. The identified
models were simulated in the same closed-loop configuration
as the true system.

Of the closed-loop methods, PBSIDopt displays the small-
est variance and bias overall in the identified transfer func-
tions. This is also reflected in the standard deviation of the
VAF values and is consistent with the conclusions in [38].
The results for the innovation estimation method CLMOESP
show a slightly larger variance overall. This may be because
of ill-conditioned projections and poor scaling related to the
observability matrix of unstable systems [23]. Note, in this
context, that systems 2–4 are indeed highly unstable with a
pole far outside the unit disc; a situation that may not likely
arise in practice. While the variances differ, all of the meth-
ods yield approximately unbiased estimates for this choice of
p = f = 4. In Example 3, the innovation estimation method
CLMOESP experiences some difficulties in terms of a large
variance in the VAF on validation data.

It is interesting to note that in these four examples
the OKID and direct parametrisation methods work quite
reliably. This is in contrast to what will be observed in
Section 5.3 where a high-order MIMO system is identi-
fied. It appears that differences between the identifications
methods become far more pronounced when we are dealing
with higher-order multivariable systems with an undefined
system order. For low-order systems, these differences are
minor.
IET Control Theory Appl., 2013, Vol. 7, Iss. 10, pp. 1339–1358
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5.2 Numerical example: behaviour with poor
excitation

In this example we consider identification of a simple fourth-
order system with two inputs and two outputs, given by

A =
⎡⎢⎣ 0.67 0.67 0 0

−0.67 0.67 0 0
0 0 −0.67 −0.67
0 0 0.67 −0.67

⎤⎥⎦

B =
⎡⎢⎣ 0.6598 −0.5256

1.9698 0.4845
4.3171 −0.4879

−2.6436 −0.3416

⎤⎥⎦ (39)

C =
[−0.3749 0.0751 −0.5225 0.5830
−0.8977 0.7543 0.1159 0.0982

]
, D = 0

(40)

K =
⎡⎢⎣−0.6968 −0.1474

0.1722 0.5646
0.6484 −0.4660

−0.9400 0.1032

⎤⎥⎦ (41)

To avoid the complication that the excitation of the input
signal is affected by feedback, we consider an open-loop
situation. The system is simulated from zero initial condi-
tions for 1000 samples using the following input sequence

uk =

⎛⎜⎜⎜⎝
sin

(
4

10
πk

)
+ sin

(
11

20
πk

)
sin

(
9

20
πk

)
+ sin

(
6

10
πk

)
⎞⎟⎟⎟⎠+ vk (42)

vk is an additive Gaussian noise term with variance
8 × 10−8. The innovation sequence ek is a Gaussian noise
sequence with a variance of 10−4. Strictly speaking, the input
signal is persistently exciting of any order, but it has been
chosen such that the condition number of the VARX data
matrix (cf. (9)) was of the order of � = 9 × 103. A past win-
dow p = 5 was chosen with a future window of f = 5 (e.g.
the minimum dimensions to be able to estimate a fourth-
order system with the CLMOESP method). Ten independent
experiments were performed.

Fig. 4 shows a comparison of poles estimated using
the CLMOESP and PBSIDopt methods and Fig. 5 shows
the identified transfer functions. While the poles seem to
be identified consistently, the CLMOESP algorithm results
in a smaller variance of the estimated poles. Also, the
transfer functions are identified more accurately. This may
have to to with a better numerical behaviour of the inno-
vation estimation-type algorithm, in this case CLMOESP
(cf. Section 2.2.4).

5.3 Experimental example: ‘smart’ beam
dynamics

In this example, we consider the closed-loop identification
of a ‘smart’ beam setup. This system is of interest since it
is of a distributed-parameter nature and hence of potentially
infinite order. Furthermore, within the considered bandwidth
there are many resonances at frequencies an order of mag-
nitude apart, such that this system could be considered to be
a ‘stiff’ system.

Fig. 6 shows the setup that was used for experimental
testing. The beam is approximately 1 m long and clamped
IET Control Theory Appl., 2013, Vol. 7, Iss. 10, pp. 1339–1358
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Fig. 4 Comparison of estimated poles using the CLMOESP (×)
and PBSIDopt (◦) methods

Fig. 5 Comparison of estimated models using the CLMOESP
(solid grey) and PBSIDopt (dashed) methods

The true system is indicated with the black line

Fig. 6 ‘smart’ beam setup

A clamped beam is equipped with six piezoelectric transducers capable of

either producing or sensing strain

at one end. It is equipped with six piezoelectric transducers
(type M8528, from Smart Material Corp.), of which two are
used for sensing, two for control and the two at the tip for
introducing a disturbance which is to be rejected. The beam
is controlled with an H∞ controller that attempts to reject
the disturbances injected at the tip.
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Fig. 7 AIC as a function of chosen past window size in the VARX
step (Section 2.2.3)

5.3.1 Excitation and noise: To be able to identify a
model of the system in closed-loop, it is beneficial to inject
a perturbation into the reference channels. [Although it may
not be necessary, see e.g. [49], a higher signal to noise ratio
results in a smaller variance of the identified model.] In prin-
ciple we may choose either r1 or r2 or both to inject this
perturbation (see Fig. 1). In the present example we inject a
pseudorandom binary signal with an amplitude of 40 V into
each of the two references. The switching probability was
chosen so as to obtain a white perturbation for frequencies
1354
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up to 200 Hz. Similar signals were generated to act as noise
on the actuators at the tip. Here, an amplitude of 20 V was
used. Signals were sampled at a rate of 1 kHz and N = 4000
and 16666 samples were used for identification and vali-
dation, respectively. In total, 65 of such experiments were
performed, each with independent realisations of the pertur-
bation and disturbance signals, allowing statistical properties
of the estimates to be inferred. We remark that the data
length for identification causes the data set to contain less
than 15 cycles of the lowest natural frequency (3.7 Hz).

5.3.2 Reference model: As a reference model, we
consider a non-parametric spectral estimate based on a
long experiment (N = 50 000 samples) performed under the
same conditions as the other experiments. This estimate
was subsequently averaged further over the 65 independent
experiments so as to obtain an even smoother estimate. The
estimate is obtained following the method in [97, 98]

Ĝ(ejω) = �̂yr�̂
−1

ur (43)

where �̂yr is the estimated cross-spectrum between yk and
rk and �̂yr is the estimated cross-spectrum between uk

and rk . This estimate can be shown to yield an asymptoti-
cally unbiased estimate provided the reference is persistently
a b

Fig. 8 Frequency response and confidence bounds; mean model (black solid), mean ±2σ (grey shaded), extreme models (light grey
shaded) and reference model (grey solid)

a p = 60
b p = 200
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exciting and uncorrelated with the noise signal. Obviously,
the estimator will only give good estimates in the frequency
range where rk excites the system. We have computed this
estimate using the recent ‘local polynomial’ method for
non-parametric frequency response estimation [98]. This is
a reliable method, which significantly reduces the adverse
effects of spectral leakage. Typically, a comparison with
a closed-loop spectral estimate is one powerful means of
validating identified LTI models.

5.3.3 Results: The most critical tuning parameter com-
mon to the subspace algorithms is the choice of the past
window size p (equivalently, the VARX model order). Well-
known tools in prediction-error identification can be used to
choose the value of p [1, 2, 23, 24, 78]. One such tool is
the Akaike information criterion (AIC) [1]. For the VARX
regression step we have shown the average AIC over ten
experiments in Fig. 7 as a function of p. The AIC clearly
suggests an order in the vicinity of p = 100.

To investigate the effect of the parameter p and the
validity of the value p = 100 suggested by the AIC, iden-
tification was performed for p = {60, 100, 200}. It is clear
that the asymptotic variance of the VARX parameters will
grow when the least-squares information matrix becomes
ill-conditioned. This strongly depends on the amount of sam-
ples available and the richness of the signal zk , as discussed
in Section 2.2.3.

A choice of p ≥ 60 turned out to give a fairly ‘white’
innovation estimate. For simplicity, the future window f in
the PBSIDopt, OKID and CLMOESP methods was taken
equal to p, but note that the choice of f also affects the
variance of the estimates, as discussed in Section 3.3 and
in [46], in particular when the input spectrum exhibits zeros
near the unit circle.

Using the order detection mechanisms (SVD) of the
PBSIDopt and CLMOESP methods a model order of n = 29
was found to give good prediction capability on a validation
dataset. This order was also selected for the SVD truncation
in the OKID method, since order detection in that method
itself was rather unclear. Figs. 8a and b show the esti-
mated confidence bounds resulting from the non-parametric
estimate and the four key discrete-time methods (PBSIDopt,
Direct parametrisation, OKID and CLMOESP) applied to 65
independent datasets for p = {60, 200}. Although the beam
system is a two-input-two-output MIMO system, only the
responses from input 1 to output 1 are shown.

Fig. 9 shows how well the estimated models predict the
system’s output on a validation dataset in terms of the VAF.
The figures show that

(i) the prediction accuracy increases with past window p for
the PBSIDopt method in particular;
(ii) the OKID method delivers unreliable estimates over-
all, where the other methods provide good models. A large
choice of p is required to obtain a reasonable model. This
is related to the direct decomposition of the matrix in (14);
(iii) the VARX direct parameterisation method exhibits
more outliers and a larger variance than the methods
PBSIDopt and CLMOESP, probably because of the lack of
a model reduction step;
(iv) the spectral estimation method cannot capture the first
resonance mode, probably due the the short duration (4 s) of
the data records;
(v) a large value of p helps to capture the first resonance
mode. This may also be related to increasing the value of f
(note that we have chosen f = p).
IET Control Theory Appl., 2013, Vol. 7, Iss. 10, pp. 1339–1358
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Fig. 9 Histograms of model quality in terms of output prediction:
histogram of attained VAFs

The results show that for p = 100 all resonances are
captured and that the VAF improves when moving from
p = 60 to 100 (much less when going from p = 100 to
p = 200). This underlines the usefulness of the AIC as an
order selection tool in the VARX modelling step. Although
a choice of p = 100 was suggested by the AIC, it can be
seen in Figs. 8a and b that the variance of the VARX model
increases marginally for larger p; this trend was found to
hold up to a past window of approx. p = 700, at which point
the information matrix quickly became ill-conditioned. Of
course, this highly depends on the character of zk and the
amount of samples.

5.4 Experimental example: continuous-time
identification

Since the flexible beam setup of the previous example rep-
resents a stiff system with resonant frequencies an order
of magnitude apart, the continuous-time formulation of
PBSIDopt was applied to the same dataset as in the pre-
vious section. The sample frequency (1 kHz) and number
of samples (N = 4000) were kept equal to those of the
discrete-time tests to allow for a proper comparison. For
the continuous-time algorithm we chose a = 240 for the
Laguerre filter time constant. Furthermore, a value of p = 38
was used for the past window size. Note that in the
continuous-time case this value does not correspond to a
time shift of p samples, but to a projection operation that is
iterated p times.

Fig. 10 shows the estimated transfer function from input 1
to output 1 and its variance on the basis of 65 independent
experiments (cf. Figs. 8a and b). While the figure shows
that the variance is slightly higher than for the discrete-time
PBSIDopt algorithm, it also shows that the first resonance
modes are captured very well, regardless of the fact that the
experiment is short (4 s) and sampled at a rate (1 kHz), which
is large in relation to the frequency of this mode (3.7 Hz).
The discrete-time algorithm required a large value of p and
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Fig. 10 Frequency response and confidence bounds; mean model
(black solid), mean ±2σ (grey shaded), extreme models (light grey
shaded) and reference model (grey solid)

Fig. 11 Frequency response and confidence bounds; mean model
(black solid), mean ±2σ (grey shaded), extreme models (light grey
shaded) and reference model (grey solid)

a longer dataset to properly capture these modes. On the
other hand, the continuous time algorithm has more diffi-
culty with the higher frequencies, which is reflected in the
fact that there is a small bias at higher frequencies and not all
the resonances are accurately captured. The corresponding
histogram for the VAF is depicted in Fig. 11.

6 Concluding remarks

In this paper, an attempt has been made to organise the wide
range of closed-loop subspace methods that has appeared
over the last decade, both for the identification of discrete-
time and continuous-time systems. Most of the algorithms
can be derived from a few fundamental steps, which in turn
can be traced back to autoregressive (VARX) modelling.

Based on experimental data obtained in repeated measure-
ments several characteristics of the methods that are highly
relevant in a practical context have been demonstrated.
It turns out that the PBSIDopt method [2] is a reliable
method. The innovation estimation methods [3], among
which CLMOESP [5], are of interest because of better
numerical conditioning in the case of poorly exciting signals
and their accurate order indication. The realisation-based
approaches can only be used reliably if sufficiently large
Hankel matrices can be constructed and may regularly incor-
rectly estimate the stability of resonant systems. Direct
parametrisation of the VARX parameters has its own value
in the sense that uncertainty on the parameters is readily
characterised, but the models are not minimal and exhibit
larger variance because of lack of a model reduction step.

The experimental results also demonstrated the value of
continuous-time methods for their ability to deal with fast
sampled data and stiff systems. On the other hand, these
methods seem to suffer from a a slightly larger variance.
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