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Preface

This book contains lecture notes which are used in the Advanced Control Theory
course which is held at the master study in Systems and Control Engineering at
Faculty of Technology at University of South-Eastern Norway.

Some of the chapters is based on translated lecture notes in Norwegian. Hence, some
of the theory also exists in Norwegian.

These lecture notes should give depth insight in Optimal Control of continuous as
well as discrete time systems.

System theory, optimal control theory and estimation theory is central topics in the
course. There also is one remarkable equation which comes up at diverse places in
those topics, namely the Riccati Equation, after Count Jacopo Francesco Riccati
and his paper from 1724.

In order to give an historical perspective we end this preliminary words by a verse
written by Count Riccati:

Since adolescence, the mind should be educated to treasure the most
eminent of sciences and the finest of arts.
I do not want to claim that every topic should be probed in detail.
Following one’s own talent and inclination, one should select at least
one topic, and study it in depth. In the others, one should follow
the example of the bee which sucks a drop of nectar from each flower...

This cite is from the Opere of Count Jacopo Riccati ca. year 1676-1754. See Bittanti,
S. (1989).
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SYSTEM THEORY





Chapter 1

Topics in Analysis of Linear
Systems

1.1 Continuous time linear state space models

Definition 1.1 (Strictly proper linear state space model)
A continuous time, time invariant, strictly proper linear state space model is defined
as follows

ẋ = Ax+Bu, (1.1)

y = Dx, (1.2)

where u ∈ Rr is the input vector, x ∈ Rn is the state vector and y ∈ Rm is
the output vector. x(t0) = x0 is the initial state at the initial time t0. The time
invariant (constant) matrices A, B and D are of dimensions n×n, n× r and m×n,
respectively.
△

Definition 1.2 (Proper linear state space model)
The linear model in Definition 1.1 is only proper if there is a direct influence from
the input vector u to the output vector y in the output equation, Eq. (1.2), i.e.

ẋ = Ax+Bu, (1.3)

y = Dx+ Eu, (1.4)

where E is a m× r constant matrix.
△

Equation (1.1) is referred to as the state equation and Equation (1.2) is referred
to as the output equation. The output equation is some times referred to as the
measurement equation or equation of measurements. The dimension n of the state
vector x is referred to as the system order. The matrix A is referred to as the state
matrix, the matrix B is referred to as the input matrix or also the control input
matrix, and D,E is referred to as output matrices. Furthermore, the linear model,
Equations (1.1) and (1.2), is defined to be deterministic if the input vector u is
exactly known.
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Definition 1.3 (Combined deterministic and stochastic model)
A continuous time, time invariant, combined deterministic and stochastic model is
defined as follows

ẋ = Ax+Bu+ Cv, (1.5)

y = Dx+ Eu+ w, (1.6)

where u is the known (deterministic) input vector, v is the stochastic (usually un-
known) process noise vector and w is the stochastic measurements noise vector.
△

Remark 1.1 Note that an only proper state space model as defined in (1.3) and
(1.4) can be expressed as the following strictly proper state space model[

ẋ
u̇

]
=

[
A B
0 0

] [
x
u

]
+

[
0
I

]
u̇ (1.7)

y =
[
D E

] [ x
u

]
(1.8)

1.2 Solution to the continuous state equation

The state equation ẋ = Ax+Bu have the following solution

x(t) = eA(t−t0)x(t0) +

∫ t

t0

eA(t−τ)Bu(τ)dτ. (1.9)

The initial time is often assumed to be zero, i.e. t0 = 0. The transition matrix Φ is
defined as

Φ(t, t0) = eA(t−t0). (1.10)

The solution x(t) given by Equation (1.9) can be written in terms of the transition
matrix Φ as follows

x(t) = Φ(t, t0)x(t0) +

∫ t

t0

Φ(t, τ)Bu(τ)dτ. (1.11)

A special case which is of particular practical importance in connection with dis-
cretization of continuous models is to consider the case were u(τ) is constant in the
time interval t0 ≤ τ < t. Hence we have that (1.11) can be written as

x(t) = eA(t−t0)x(t0) +A−1(eA(t−t0) − I)Bu(t0) (1.12)

when A is non-singular. This can be proved as follows∫ t
t0
Φ(t, τ)Bu(τ)dτ = (

∫ t
t0
eA(t−τ)Bdτ)u(τ) =

[
−A−1eA(t−τ)

]t
t0
Bu(t0)

= (−A−1 − (−A−1)eA(t−t0))Bu(t0) = A−1(eA(t−t0) − I)Bu(t0) (1.13)

where we have used that u(τ) = u(t0) in the time interval t0 ≤ τ < t. The integral
in (1.11) can also be solved for the case when A is singular. See exercise 19.1 and
solution 19.1 for an example.
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1.3 Discrete time linear state space models

For some linear systems the state, input, output and noise vectors are defined only
at fixed time instants, say

tk = k∆t, (1.14)

where k ≥ 0 is defined as the discrete time, usually the integer values

k = 0, 1, 2, ... (1.15)

and ∆t is the sampling interval, usually a constant time interval.

If an arbitrarily continuous vector signal u(t) is sampled at the discrete time instants
as specified above, then we have a sequence of vectors defined only at discrete time
instants

u(tk) = u(k∆t) ∀ k = 0, 1, . . . (1.16)

We will make the following shorthand notation

uk
def
= u(tk) = u(k∆t). (1.17)

In a Digital Control System (DCS) we frequently have that the input u(t) to the
process is applied periodically at time instants tk = k∆t and held constant within
the period, i.e.

u(t) = uk ∀ k∆t ≤ t < (k + 1)∆t and k = 0, 1, . . . (1.18)

A discrete signal uk can be converted to a stepwise constant continuous signal u(t)
as defined in (1.18) by using a zero-order hold element, i.e. a digital to analog
converter.

In digital control systems a discrete input uk to the process is usually computed by
a digital controller. The digital (discrete) signal uk must be converted to an analog
(continuous) signal before being sent to the process (or final control element, such
as e.g. a valve position). One of the most common digital to analog converters is the
zero-order hold element which results in a signal u(t) as described above in (1.18).

Another digital to analog converter is the first-order hold element. A first-order
hold assumes that the signal changes linearly as predicted from e.g. the two recent
samples uk−1 and uk

Suppose now that the continuous output y(t) from the process is observed also
periodically at discrete time instants of time which, however, need not coincide in
time with the time instants at which the inputs are adjusted. Define

yk = y(k∆t+∆t′) where 0 ≤ ∆t′ < ∆t and k = 0, 1, . . . (1.19)

We will call ∆t′ the displacement in time between the sampled variables uk and yk.

A discrete time state space model is presented in the following definition.
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Definition 1.4 (Discrete time, proper state space model)
A discrete time, time invariant, proper state space model is defined as follows

xk+1 = Axk +Buk, (1.20)

yk = Dxk + Euk, (1.21)

where uk ∈ Rr is the input vector, yk ∈ Rm is the output vector and xk ∈ Rn is
the state vector. A is the state transition matrix and E is the direct feed-through
matrix. x0 is the initial time state vector. x0 is usually specified.
△

Note that the discrete time system may have a direct feed-through term E ̸= 0 even
if the underlying continuous time system has not. The reason for this is e.g. the
presence of a displacement ∆t′ in time between the input uk and the output yk.

Hence, a discrete version of a continuous model ẋ = Acx+Bcu and y = Dcx is given
by (1.20) and (1.21) with the discrete model matrices

A = eAc∆t B =
∫ ∆t
0 eAcτBcdτ

D = Dce
Ac∆t′ E = Dc

∫ ∆t′

0 eAcτdτ

and where ∆t is the sampling time and ∆t′ is the displacement between the input
and the output. A common special case is to assume that the displacement ∆t′ = 0.
In this case we have that D = Dc and E = 0.

A linear or linearized system which is influenced by process noise vk and measure-
ments noise wk can be described as in the following definition.

Definition 1.5 (Discrete combined deterministic and stochastic model)
A discrete time, time invariant, combined deterministic and stochastic model is
defined as follows

xk+1 = Axk +Buk + Cvk, (1.22)

yk = Dxk + Euk + wk, (1.23)

where uk is the input vector, vk is the process noise vector and wk is the measure-
ments noise vector.
△

Remark 1.2 Note that the only proper state space model, as defined in (1.20) and
(1.21), can be expressed as the following strictly proper state space model

[
xk+1

uk+1

]
=

[
A B
0 0

] x̃k︷ ︸︸ ︷[
xk
uk

]
+

[
0
I

]
uk+1 (1.24)

y =
[
D E

] [ xk
uk

]
(1.25)

where the initial time state vector is given by

x̃0 =

[
x0
u0

]
(1.26)

We have here assumed that the initial time is k = 0.



1.3 Discrete time linear state space models 5

Some alternative methods for reformulating an only proper state space model into
a strictly proper state space model are discussed and presented in Exercises ?? - ??
and Solutions ?? - ??.
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Figure 1.1: A 1.st order continuous model (ẋ = −1
3x + u, y = 1

3x) excited with a
unit input step response is discretized with varying sampling rate.
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Figure 1.2: A 1.st order continuous model (ẋ = −1
3x + u, y = 1

3x) exited with
a unit input step response is discretized with varying sampling rate. The discrete
state space model parameters are illustrated as a function of the sampling rate. The
continuous model is strictly proper (E = 0).

Example 1.1 (Effect of sampling a continuous SS model)
Consider a continuous time, strictly proper state space model given by

ẋ = −1

3
x+ u, y =

1

3
x. (1.27)
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The continuous response after an input experiment is illustrated in Figure (1.1).
The continuous time model is simulated from time t0 = 0 to t1 = 79.9 by using
the Matlab Control System Toolbox function lsim.m. The continuous time instants
is generated by t = 0 : 0.1 : 79.9 which results in 800 time instants with a time
increment (sampling time) of 0.1.

The data which results from the simulation of the continuous time model is sampled
with varying sampling interval of ∆t = 5, ∆t = 10 and ∆t = 20. The discrete time
instants are also illustrated in Figure (1.1).

It can be shown, by e.g. using a system identification method, that the discrete time
instants are exactly given by a proper state space model of the form

xk+1 = Axk +Buk (1.28)

yk = Dxk + Euk (1.29)

where the discrete state space model parameters are as illustrated in Figure (1.2)
and presented in the table below.

∆t 0 5 10 20
A −1

3 0.1889 0.0357 0
B 1 0.1584 0.0356 0
D 1

3 1 1 0
E 0 0.8047 0.9631 1.0053

(1.30)

The discrete model parameters
shown in Figure 1.2.

△

Example 1.1 illustrates the fact that sampling a strictly proper continuous state
space model may give rise to a discrete time state space model which is only proper,
i.e. a state space model characterized with a direct feed-through term Euk from the
input uk to the output yk.

The reason for this is usually the presence of some kind of displacement in time
between the signals. E.g., a small displacement in time between the input uk and
the output yk.

Remark 1.3 Consider a continuous model ẋ = Acx + Bcu and that the input is
constant over time (sampling) intervals of size ∆t > 0, i.e., u(t) is constant for
tk ≤ t < tk +∆t. An exact discrete time model can then be derived from (1.12) and
is given by

xk+1 = Axk +Buk (1.31)

where

A = eAc∆t, (1.32)

B = A−1
c (eAc∆t − I)Bc. (1.33)
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1.4 Controllability

Definition 1.6 (Controllability)
The linear system, Equation (1.1), is said to be completely (state) controllable if for
any initial state vector x0 = x(t0) there exist a finite time tf and a control vector
u(t) for the time interval t0 ≤ t ≤ tf which moves the state vector to a prescribed
final state vector xf = x(tf ).
△

It exists several criteria for controllability which gives us a (yes or no) answer to
whether a linear system, defined by the pair (A,B), is controllable or uncontrollable.

Theorem 1.4.1 (Controllability matrix)
The pair (A,B) is controllable if and only if the controllability matrix

Cn =
[
B AB A2B · · · An−1B

]
∈ Rn×n·r, (1.34)

has rank n, i.e. rank(Cn) = n.

If rank(B) = rB ≥ 1, then, this condition reduces to

Cn−rB+1 =
[
B AB A2B · · · An−rBB

]
∈ Rn×(n−rB+1)·r, (1.35)

where we have assumed that n− rB + 1 > 0. The pair (A,B) is controllable if and
only if the reduced controllability matrix Cn−rB+1 have rank n.
△

Theorem 1.4.1 is valid for both continuous time and discrete time models. Un-
fortunately, this theorem may give a wrong answer, since the computations of the
controllability matrix (Cn) may be related to great errors, because of subtractive
cancelations in evaluating the powers of A. For multi input systems, r > 1 and
rank(B) = rB > 1, Equation (1.35) is recommended (if Theorem 1.4.1 is to be
used), because powers of A only up to An−rB has to be computed. The rank test of
the controllability matrix works well on small systems which can be solved exactly
by hand, but it may lead to a very poor algorithm when used as the basis of machine
software.

The MATLAB Control System Toolbox function ctrb can be used to form the
controllability matrix Cn, i.e. Cn = ctrb(A,B).

Example 1.2 (Controllability)
Given a system described by

A =

[
1 δ
0 δ

]
, B =

[
1
δ

]
. (1.36)

The controllability matrix for this system is given by

C2 =
[
B AB

]
=

[
1 1 + δ2

δ δ2

]
. (1.37)
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The system is controllable if δ ̸= 0 because rank(C2) = 2 in this case.

But if a computer with machine precision eps is used to compute C2, then we will
get

C2 =
[
B AB

]
=

[
1 1
δ δ2

]
=

[
1 1
0 0

]
(1.38)

when δ <
√
eps. The reason for this is that δ = δ2 = 0 in this case. Note that

rank(C2) = 1 in this last case. The computer based controllability test says that the
system is not controllable even if it is.

1.4.1 Continuous time controllability Gramian

Theorem 1.4.2 (Continuous controllability Gramian)
Assume the linear continuous time model. The pair (A,B) is controllable if and
only if the n× n controllability Gramian

Wc(t) =

∫ t

0
eAτBBT eA

T τdτ ∈ Rn×n. (1.39)

is positive definite for some t > 0. Wc is positive definite if and only if rank(Wc) = n.

△

If A is a stable matrix, then for t → ∞, the continuous infinite time controllability
Gramian satisfy the Lyapunov matrix equation

AWc +WcA
T = −BBT . (1.40)

The Lyapunov equation is linear in the elements wij of the Controllability Gramian
Wc. There exist numerically stable and efficient algorithms for solving the linear
matrix Lyapunov equation. Hence, it is a better method than the rank test, Theorem
(1.4.1), for controllability analysis. The MATLAB Control System Toolbox function
gram can be used to compute the continuous time controllability Gramian Wc. The
function gram solves the Lyapunov equation (1.40) for Wc. gram works only for
stable systems. A method for computing Wc which also works for unstable systems
is presented below.

Proof of Equation (1.40)
Substitute Equation (1.39) into the left hand side of Equation (1.40). We have

AWc +WcA
T =

∫ t

0
AeAτBBT eA

T τdτ +

∫ t

0
eAτBBT eA

T τATdτ

=

∫ t

0

d

dτ
(eAτBBT eA

T τ )dτ

= [eAτBBT eA
T τ ]t0 = eAtBBT eA

T t −BBT . (1.41)

which is identical to the Lyapunov matrix Equation (1.40) when A is stable and
t → ∞. QED
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If A is unstable, the Gramian Equation (1.39), can be solved directly for some finite
t. Hence, in the general case the Gramian can be solved as follows. Compute the
following matrix exponential

[
E11 E12

0 E22

]
= e

−A BBT

0 AT

t
, (1.42)

The Gramian is then given by

Wc(t) = ET
22E12. (1.43)

We shall however note that a simple method for computing the controllability
Gramian Wc(t) for a specified finite time t, can be done by solving the Lyapunov
matrix equation

AWc(t) +Wc(t)A
T = eAtBBT eA

T t −BBT (1.44)

for Wc(t). This follows from Equation 1.41.

1.4.2 Control input for specified state

The input which achieves the state x(t1) is given by

u(t) = −BT eA
T (t1−t)W−1

c (t1 − t0)(e
A(t1−t0)x(t0)− x(t1)). (1.45)

whereWc(t) is defined in (1.39). This expression can be derived from linear quadratic
optimal control theory. However, a more direct proof is given in the following.

Proof: From Equation (1.9) with t = t1 we have

x(t1) = eA(t1−t0)x(t0) +

∫ t1

t0

eA(t1−τ)Bu(τ)dτ. (1.46)

We will below show that the control input defined by (1.45) satisfy (1.46). Substi-
tuting u(τ) given by (1.45) into (1.46) gives

x(t1) = eA(t1−t0)x(t0)

−
∫ t1

t0

eA(t1−τ)BBT eA
T (t1−τ)dτ︸ ︷︷ ︸

Wc(t1−t0)

W−1
c (t1 − τ)(eA(t1−t0)x(t0)− x(t1)) . (1.47)

The integral which is under-braced can be shown to be identical to the Gramian
Wc(t1). This can be shown by changing the integration variable from τ to e.g. s.
Defining s = t1 − τ gives ds = −dτ and integration from s0 = t1 − 0 = t1 to
s1 = t1 − t1 = 0 gives.∫ t1

t0

eA(t1−τ)BBT eA
T (t1−τ)dτ = −

∫ 0

t1−t0

eAsBBT eA
T sds = Wc(t1 − t0), (1.48)
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which is identical to the controllability Gramian (1.39). Finally from (1.47) we have

x(t1) = eA(t1−t0)x(t0)−Wc(t1 − t0)W
−1
c (t1 − t0)(e

A(t1−t0)x(t0)− x(t1)).
⇓

x(t1) = eA(t1−t0)x(t0)− (eA(t1−t0)x(t0)− x(t1)).
⇓

x(t1) = x(t1).

(1.49)

QED.
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−6

−4

−2

0

2
Control input u(t)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
−1.5
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−0.5

0

0.5

1

1.5
States x1(t) and x2(t)

Time [sec]

x2(t)

x1(t)

Figure 1.3: Illustration of state controllability. It was specified that the states at
time t = 4 should be x1 = x2 = 1. Se Example 1.3 for details.

Example 1.3 State controllability
Consider the system

ẋ =

[
−1 0.1
0.2 −2

]
x+

[
1
2

]
u, x(t0) =

[
0
0

]
. (1.50)

From the definition of state controllability we have that it exist a control signal u(t)
which gives a final state vector x(t1).

Assume that we want the state at time t1 = 4 to be

x(t1 = 4) =

[
1
1

]
. (1.51)

Using (1.45) we get to input signal

u(t) = −
[
1 2

]
eA

T (4−t)

[
−4.925
2.466

]
. (1.52)

This result is illustrated in Figure 1.3. Figure 1.3 shows that the states actually hit
the target x1 = x2 = 1. However, from Equation (1.45) we have that the input is
unstable for t > t1 = 4 when A is stable.
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1.4.3 Discrete time controllability Gramian

The discrete time equivalent to the Controllability Gramian theorem is as follows

Theorem 1.4.3 (Controllability Gramian)
Assume the linear discrete time model. The pair (A,B) is controllable if and only
if the n× n discrete time controllability Gramian

Wc =

N∑
i=1

A(i−1)BBTA(i−1)T ∈ Rn×n. (1.53)

is positive definite for N > n. Same as rank(Wc) = n.

△

If A is a stable matrix, then for N → ∞, the discrete infinite time controllability
Gramian satisfy the discrete Lyapunov matrix equation

AWcA
T −Wc = −BBT . (1.54)

The Lyapunov equation is linear in the elements wij of the Controllability Gramian
Wc. This is a better method than the rank test, Theorem (1.4.1), for controllability
analysis.

Note also that the discrete time controllability Gramian satisfy

Wc = CNCT
N , (1.55)

where CN is the extended controllability matrix. This gives immediately the link
between the controllability matrix and the discrete controllability Gramian.

1.5 Steady state controllability

Consider a stable state space model

ẋ = Ax+Bu, (1.56)

y = Dx+ Eu. (1.57)

In order to analyze the system in steady state the system must be stable, i.e A has
all eigenvalues strictly in the left hand part of the complex plane.

We will in the following discuss perfect control and controllability. The transfer
function model is then

y(s) = (D(sI −A)−1B + E)u(s) (1.58)

where s is the Laplace operator. In steady state we have s = 0. The continuous
proper linear state space model is in steady state described by

xs = −A−1xs +Bus, (1.59)

ys = (−DA−1B + E)us. (1.60)
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where xs, us and ys are steady state vectors. Introduce the steady state gain matrix
from the inputs u to the outputs y, i.e.

Hd = −DA−1B + E. (1.61)

Theorem 1.5.1 (Steady state output controllability)
If the system matrix A is non-singular, i.e. if A−1 exist, then the system is com-
pletely steady state output controllable, if and the steady state gain matrix Hd =
−DA−1B + E is non-singular.
△

This can be proved as follows. Assume that we want to force the output y to
a prescribed set-point ys in steady state by some control input vector us. It is
immediately shown from the above that us is defined if and only if Hd is invertible,
i.e. us = (Hd)−1ys.

1.6 Observability

Theorem 1.6.1 (Observability matrix)
Define the observability matrix

Oi =


D
DA
DA2

...
DAi−1

 ∈ Rmi×n, (1.62)

The pair (D,A) is observable if and only if the observability matrix Oi has rank n,
i.e. rank(On) = n.

If rank(D) = rD ≥ 1 and n − rD + 1 > 0, then we have that the pair (D,A) is
observable if and only if the reduced observability matrix On−rD+1 have rank n.
△

Theorem 1.6.2 (Continuous observability Gramian)
Consider the linear continuous time model. The pair (D,A) is observable if and
only if the n× n observability Gramian

Wo(t) =

∫ t

0
eA

T τDTDeAτdτ ∈ Rn×n. (1.63)

is positive definite for some t > 0. Wo is positive definite if and only if rank(Wo) = n.

If A is a stable matrix, then for t → ∞, the continuous infinite time observability
Gramian satisfy the Lyapunov matrix equation

ATWo +WoA = −DTD. (1.64)

△
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Theorem 1.6.3 (Discrete observability Gramian)
Consider the linear discrete time model. The pair (D,A) is observable if and only
if the n× n discrete time observability Gramian

Wo =
N∑
i=1

A(i−1)TDTDA(i−1) ∈ Rn×n. (1.65)

is positive definite for N > n. Same as rank(Wo) = n.

If A is a stable matrix, then for N → ∞, the discrete infinite time observability
Gramian satisfy the discrete Lyapunov matrix equation

ATWoA−Wo = −DTD. (1.66)

In the general case the Gramian can be solved as follows. Compute the following
matrix exponential

[
E11 E12

0 E22

]
= e

−AT DTD
0 A

t
, (1.67)

for some specified time t > 0. The observability Gramian is then given by

Wo(t) = ET
22E12. (1.68)

△

Note also that the discrete time observability Gramian satisfy

Wo = OT
NON , (1.69)

where ON is the extended observability matrix for the pair (D,A). This gives
immediately the link between the observability matrix and the discrete observability
Gramian.

1.7 More on observability and controllability

Remark 1.4 (Diagonal form and observability and controllability)
Consider a state space model ẋ = Ax + Bu and y = Dx + Eu and its diagonal
canonical form

ż = Λz +M−1Bu (1.70)

y = DMz + Eu (1.71)

where Λ is a diagonal matrix with the eigenvalues λi ∀ i = 1, . . . n of A on the
diagonal and M =

[
m1 · · · mn

]
is the corresponding eigenvector matrix. Note the

relationship Ami = λimi between the ith eigenvalue and eigenvector.

The system is observable if no columns in the matrix DM is identically equal to
zero. Furthermore, the system is controllable if no rows in the matrix M−1B is
identically equal to zero.
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Note that the controllability and observability tests is existence tests. They says
nothing about the degree of controllability and observability. This is an important
limitation.

1.8 Zeroes in multivariable linear systems

Zeros are usually and numerically preferred, computed from a state space realization
of the system. The method is illustrated in the following.

The Laplace transform of the continuous time proper state space model is given by

sx(s) = Ax(s) +Bu(s), (1.72)

y(s) = Dx(s) + Eu(s). (1.73)

This system of equations can be written i matrix form as follows([
sI 0
0 0

]
−
[
A B
D E

])[
x
u

]
=

[
0
−y

]
. (1.74)

The zeroes are the values s = s0 for which the matrix

sIg − S = s

Ig︷ ︸︸ ︷[
I 0
0 0

]
−

S︷ ︸︸ ︷[
A B
D E

]
, (1.75)

loses rank. If s0 is a zero frequency, then the matrix (1.75) will lose rank at s = s0,
and there will exist a vector

m0 =

[
x0
u0

]
, (1.76)

such that

(s0Ig − S)

[
x0
u0

]
= 0. (1.77)

The zeroes are then computed as the finite generalized eigenvalues of the following
generalized eigenvector/eigenvalue problem

Sm0 = s0Igm0. (1.78)

This is preferred for numerical calculations. Note that if Ig = I this reduces to the
conventional eigenvector/eigenvalue problem.

Note that the zeros can be calculated as the roots of the characteristic equation (for
the generalized eigenvalue problem), i.e.,

ρ(s) = det(s0Ig − S) = 0 (1.79)

This method may be suitable for hand calculations of some simple systems, i.e., for
systems which lead to an S matrix of at most dimension 4 × 4. The roots can, in
general, be computed analytically in this case.
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Note that the zero frequency s0 results in zero output y = 0 for some non-zero input
u0 and initial value x0. In other terms this means that an input

u = u0e
s0t, (1.80)

results in an output y ≡ 0 for some initial state vector x0.

Note also that zeroes in MIMO systems often are called transmission zeroes. The
zeroes are generally different from the zeroes of the elements in the transfer matrix
H(s) = D(sI −A)−1B + E.

Example 1.4 (Transmission zeroes)
Given a continuous linear two-input and two-output (MIMO) system with system
matrices

A =

[
−1

2 0
0 −1

]
, B =

[
2 1
1 1

]
, D =

[
1 0
0 1

]
, E =

[
−1 0
0 −1

]
(1.81)

The generalized eigenvalue problem can be solved in MATLAB as [m0, s0] = eig(S, Ig)
where s0 is a vector with the transmission zeroes and m0 is a vector with generalized
eigenvectors satisfying Sm0 = Igm0s0.

There are two finite zeroes of this generalized eigenvalue problem, s10 = −1
2 and

s20 = 2. Hence, the system has a zero in the left half plane. The system is non-
minimum-phase.
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Chapter 2

Multivariable Frequency
Analysis

2.1 Stabilizability and detectability

Definisjon 2.1 (Controllability)
A system ẋ = Ax + Bu is controllable if there exist a control vector u(t) ( defined
over a finite time interval t0 ≤ t ≤ t1) which brings the system state vector x(t)
from an arbitrary initial state x(t0) to an arbitrary final state x(t1) within the final
time interval.

Definisjon 2.2 (Stabilizability)
A system given by the matrix pair (A,B) is stabilizable if all unstable modes
(eigenvalues or poles) are controllable.

Note that stabilizability is a weaker demand than controllability. In a stabilizable
system there may be uncontrollable states but those states must be stable. Often
there dos not matter if some states are uncontrollable, but it make sense to demand
the system to be stable.

Definisjon 2.3 (Observability)
A system is observable if it by the knowledge of the system output measurements
vector y and the input vector u within a finite time interval (t0 ≤ t ≤ t1) is possible
to compute all elements (variables) in the state vector x(t).

Definisjon 2.4 (Detectability)
A linear system given by the matrix pair (D,A) is detectable if all unstable modes
in the system (i.e. eigenvalues ore poles in the system) is observable.

Remark that detectability is a weaker demand than observability. A detectable
system may have un observable states, but those un observable states must be stable
for the system to be detectable. The above definitions are central in connection with
existence analysis of the solution to the linear quadratic optimal control problem as
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well as the dual linear optimal estimation problem, i.e. the Kalman filter. If the
system matrix, A, can be diagonalized, i.e. if there exists an eigenvalue matrix
M and a diagonal eigenvalue matrix Λ such that Λ = M−1AM ore equivalently
A = MΛM−1, then stabilizability and detectability analysis can be performed by
viewing rows in M−1B and columns in DM , respectively. The system is stabilizable
if no rows in M−1B witch belongs to unstable eigenvalues (positive eigenvalues), are
identically equal to the zero vector. In the same way, the system is detectable if no
columns in DM , which belongs to unstable eigenvalues, are identically equal to the
zero vector.

In connection with linear dynamic systems we often speak of the modes of the system.
the modes of a realization (A,B,D) is described by the eigenvalues of the system
matrix A. In connection with this we also have modal analysis and modal control.
Modal analysis of a system (A,B,D) is performed on the equivalent diagonalized
system (Λ,M−1B,DM) where Λ = M−1AM is a diagonal eigenvalue matrix, if the
eigenvector matrix M is non-singular (invertible). Model control means to find the
controller such that the closed loop system gets prescribed modes (ore eigenvalues).

2.2 System poles and related definitions

It is important to remark that the poles of a linear dynamic system usually are
computed numerically by computing the eigenvalues of the system matrix A in the
linear state space model. This state space model should (but not necessary) be a
minimal realization in order to get as few poles as possible.

Definisjon 2.5 (Poles from state space model)
The poles of a system given by the state space model ẋ = Ax + Bu, y = Dx + Eu
is given by the eigenvalues λi ∀ i = 1, . . . , n to the system matrix A. The pole
polynomial ore the characteristic polynomial for A is defined as

π(s) = det(sI −A) = sn + ans
n−1 + · · ·+ a2s+ a1 =

n∏
i=1

(s− si) (2.1)

where si = λi ∀ i = 1, . . . , n is the poles of the system. An alternative is

π(λ) = det(λI −A) = λn + anλ
n−1 + · · ·+ a2λ+ a1 =

n∏
i=1

(λ− λi) (2.2)

where λi ∀ i = 1, . . . , n is the poles of the system. Hence, the poles are given by the
roots of the characteristic equation, i.e., π(s) = det(sI −A) = 0.

We define, n, as the order of the dynamic system, if the state space model is a
minimal realization, i.e., so that the state space model does not contain unnecessary
states which are not controllable and observable.

The definition is valid if the state space model is a minimal realization or not. If the
state space model is not a minimal realization, then we will have poles that describes
redundant states which is uncontrollable and unobservable. Note that a minimal
realization can be computed in MATLAB by the function minreal(A,B,D,E).
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Definisjon 2.6 (Minimal realization)
A state space realization (A,B,D) is minimal if and only if the pair (A,B) is con-
trollable and the pair (D,A) is observable.

If (A,B,D) is a minimal realization then the system matrix A has least possible
dimension, i.e., the system order, n, in a minimal realization is minimal.

If the transfer matrix H(s) of a system is given, then this model can be transformed
to a state space model and the system poles can then be computed from the eigenval-
ues of the system matrix A. However, in some cases it may make sense to compute
the poles directly from the transfer function model H(s) directly. One advantage is
that the calculations is easy to perform by hand. the calculations will also directly
give the poles corresponding to a minimal state space realization.

Definisjon 2.7 (Poles from transfer matrix model H(s))
The pole polynomial π(s) is given by the smallest common denominator for all under
determinants, which is not identically zero, of all orders of the system transfer matrix
H(s). The pole polynomial is then given by

π(s) =

n∏
i=1

(s− si) (2.3)

where si ∀ i = 1, . . . , n is the system poles.

The poles of the system is then given by the roots of the pole polynomial π(s).

One weakness with this definition is that it gives no reliable method to be imple-
mented in a computer. The problem is to find the roots of polynomials because this
is numerically difficult. The problem is badly conditioned for numerically computa-
tions in a computer. the most robust and reliable method of computing poles in a
computer is to do the calcluations by computing the eigenvalues of the A matrix.

2.3 Poles and stability

Teorem 2.3.1 (Stability in linear dynamic systems)
A linear dynamic system ẋ = Ax + Bu is stable if and only if all poles (ore eigen-
values) λi ∀ i = 1, . . . , n to the system matrix A is located in the left half part of the
complex plane. This is equivalent with that the real part of the poles is negative, i.e.,
Re{λi(A)} < 0.

2.4 Zeroes in multivariable systems

An important meaning of a zero, say s0, is that the effect of a control input, u(s0) ̸=
0, on the system is such that the output is zero, i.e. y(s0) = H(s0)u(s0) = 0.

For SISO systems we simply find the zeroes as the values s0 which results in that
H(s0) = 0, where y = H(s)u is the transfer function model of the system. This can
be extended to MIMO systems as follows:
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Definisjon 2.8 (Zeroes and transfer matrix)
si is defined as a zero for the transfer matrix H(s) if the rank of H(si) is less than
the natural (maximal) rank of H(s).

We say that the transfer matrix loses rank if the system is excited a control input
with ”frequency” equal to the system zero. The effect of this control will then be
invisible on at least one of the system outputs.

Notice, that the transfer function h(s) in a SISO system will be equal to zero if the
system is exited a control input with such a frequency, i.e., y(si) = h(si)u(si) = 0
and h(s0) = 0.

Definisjon 2.9 (Zero polynomial and zeroes from transfer matrix)
The zero polynomial ρ(s) is given as the largest common divisor (numerator) to the
under determinants of order rH for the transfer matrix H(s), where rH is the natural
rank of H(s), assumed that all under determinants are justified such that they have
the pole polynomial as denominator.

the natural rank of H(s) is given by the rank of H(s) for all s except for the singu-
larities given by the zeroes si. The natural rank of H(s) ∈ Rm×r is normally given
by

rH = min(m, r), (2.4)

where m is the number of outputs (variables in the vector y) and where r is the
number of control inputs (variables in the vector u).

The zero polynomial in factorized form is given by

ρ(s) =

nn∏
i=1

(s− si), (2.5)

where si ∀ i = 1, . . . , nn are the system zeroes. The system zeroes are given as the
roots of the zero polynomial.

The transfer matrix model of the system is given by y(s) = H(s)u(s) where y(s) ∈
Rm is the system output vector and u(s) ∈ Rr is the system input vector (control
vector). The normal rank of H(s) is then given by rH = min(m, r). The rank of
H(s) is less than rH only for s = si equal to the system zeroes.

Merknad 2.1 (Zeroes for non singular (invertible) transfer matrix)
In the case that H(s) is invertible and thereby quadratic, then we can find the zeroes
of a minimal realization of H(s) as the poles to H−1(s). I.e., the zeroes for H(s) is in
this case found simply found as the roots to the zero polynomial ρ(s) = detH(s) = 0.

Merknad 2.2 (Minimum-phase and non-minimum-phase system)
If the system zeroes are stable, i.e., lies in the left half of the complex plane, then we
say that the system is a minimum-phase system. If all or some of the zeroes lies in
the right half of the complex plane, the system is said to be a non-minimum-phase
system.
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2.5 More about zeroes

1. It is important to notice that the system zeroes are generally not changed
by feedback control. This yields both state feedback and output feedback.
Example 2.1 illustrates this as well as the effect of zeroes in the right half
plane.

2. It is furthermore important to note that the system ẋ = Ax + Bu and y = x
controlled with state feedback, e.g., u = G(x0−x), does not have transmission
zeroes, i.e. zeroes from x0 to the output y. This is one reason for the good
robustness properties of Linear Quadratic (LQ) optimal control, i.e., at least
60◦ phase margin and gain margin of 1

2 ore more. In general,note also that a
system with D = I and E = 0 does not have zeroes.

3. We usually have zeroes in systems with fewer control inputs (ore outputs) than
states, or when E ̸= 0.

4. Note also that a system may have zeroes at infinity, i.e., s0 = ±∞ zeroes. Such
zeroes is mostly of interests in root locus analysis, i.e., the investigation of the
movement of poles and zeroes in the complex plane by varying the feedback
parameters. Zeroes at infinity are not found by the method which is based
on the transfer matrix. The method based on the state space model and the
generalized eigenvalue problem also finds zeroes at infinity.

Teorem 2.5.1 (Zeroes in open loop and closed loop systems)
Given a system described by

ẋ = Ax+Bu, (2.6)

y = Dx+ Eu, (2.7)

which is controlled by the state feedback

u = −Gx+ u0. (2.8)

The open loop, uncontrolled system, given by y = Hpu where

Hp = D(sI −A)−1B + E, (2.9)

have the same zeroes as the feedback controlled closed loop system given by y = Hclu
0,

where

Hcl = (D − EG)(sI − (A−BG))−1B + E. (2.10)

Proof 2.1 The closed loop system described with

ẋ = (A−BG)x+Bu0, (2.11)

y = (D − EG)x+ Eu0. (2.12)

This can be written as

S︷ ︸︸ ︷[
sI − (A−BG) −B

D − EG E

] [
x(s)
u(s)

]
=

[
0

y(s)

]
=

[
0
0

]
(2.13)
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when s is a zero, i.e., y(s) = 0. The zeroes of the controlled system is described by
those values s which results in that the matrix S loses rank below the natural rank
which is min(n+m,n+ r). The zeroes are then found by det(S) = 0.

In order to investigate the relationship between the closed loop system zeroes and the
open loop system zeroes, we use that[

sI − (A−BG) −B
D − EG E

]
=

[
sI −A −B

D E

] [
I 0

−G I

]
(2.14)

This means that

det(S) = det

[
sI − (A−BG) −B

D − EG E

]
= det

[
sI −A −B

D E

]
(2.15)

We have here used that det(AB) = det(A) for two matrices A and B with suitable
dimensions, and if B is non-singular.

This means that the zeroes of the controlled system is identical to the zeroes of the
open loop uncontrolled system, i.e., zeroes does nor change by feedback.

2.6 Examples

Example 2.1 (Effect of feedback: SISO system)
Given a system described by the transfer function

hp(s) =
1− s

1 + s
. (2.16)

This system have a loop transmission zero at s = 1 and a pole in s = −1. We
say that the zero is located in the right half plane. The system is therefore a non-
minimum phase system and we could have limitations in the feedback gain and the
speed response of the control system.

We want to control the system with a proportional, P-controller, i.e.,

u = g(y0 − y), (2.17)

where y0 is the reference and g = Kp is the proportiolnal gain constant. The closed
loop system is therefore described by

y

y0
= hcl(s) =

hp(s)hr(s)

1− (−1)hp(s)hr(s)
=

g(1− s)

(1− g)s+ 1 + g
, (2.18)

where we have used negative feedback.

As we see the closed loop system have a zero at s = 1, i.e., unchanged and identical
with the zero of the open loop system. This is general, the locations of zeroes are not
changed by feedback. The pole of the feedback system is

scl = −1 + g

1− g
. (2.19)
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We demand stability of the closed loop system, i.e. we require scl < 0. This is
satisfied for

−1 < g < 1. (2.20)

This implies that the speed of the control system is limited. For this example it
implies that we will have problems with an inverse response, because the system is
non-minimum phase and that the system have a right hand transmission zero. As
we see, the system have an inverse response because the gain at time zero, t = 0 is
given by

hcl(s = ∞) =
−g

1− g
=→ −∞ n̊ar g → 1 (2.21)

and that the system have a gain with the opposite sign given by hcl(s = 0) = g
1+g .

This means that the inverse response increases against infinity for increasing gain
g, i.e. when g → 1. At the same time we obtain faster closed loop time response
because the pole of the closed loop system move to the left in the complex plane.
i.e. scl → −∞ when g → 1. The problem is that we cannot obtain fast closed loop
response and small inverse response at the same time. This is illustrated in Figure
2.1. We also see from Figure 2.2 that the amount of control increases as g → 1.
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Figure 2.1: Step response simulation of a system with hp(s) =
1−s
1+s and u = g(y0−y)

for varying proportional coefficient 0.8 < g < 0.96.

Example 2.2 (PI-control of non-minimum-phase SISO system)
Given a system described by the transfer function

hp(s) =
1− 2s

s2 + 3s+ 2
=

1− 2s

(s+ 1)(s+ 2)
, (2.22)

which are to be controlled by a PI-controller given by

hc(s) = Kp
1 + Tis

Tis
. (2.23)
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Figure 2.2: The input u = g(y0 − y) after a step response simulation of a system
with hp(s) =

1−s
1+s for varying proportional coefficient 0.8 < g < 0.96.

Often a common choice is to chose the integral time Ti such that the dominating
time constant in the process is canceled, and such that the loop transfer function is,
h0 = hphc, at the same time is simplified. The system have two poles/eigenvalues,
s1 = −1 and s2 = −2 and therefore also two time constants, e.g., T1 = − 1

s1
= 1 and

T2 = − 1
s2

= 1
2 . We then have that (with Ti = T1 = 1) that

h0(s) = hphc =
1− 2s

(s+ 1)(s+ 2)
Kp

1 + Tis

Tis
=

Kp

Ti

1− 2s

s(s+ 2)
, (2.24)

where we have chosen Ti = 1. Vi kan n̊a finne krav til proporsjonalkonstanten, Kp,
ved å kreve stabilitet av det lukkede systemet, dvs. systemet fra referansen, r, til
utgangen, y. Vi har at transferfunksjonen fra r til y i ett reguleringssystem med
negativ tilbakekopling er gitt ved

y

r
=

h0
1 + h0

=

Kp

Ti

1−2s
s(s+2)

1 +
Kp

Ti

1−2s
s(s+2)

=

Kp

Ti
(1− 2s)

s2 + 2(1− Kp

Ti
)s+

Kp

Ti

(2.25)

Det kan vises at ett 2. grads polynom, s2+a1s+a0 = 0 har røtter i venstre halvplan
(stabilt system) dersom koeffisientene er positive, dvs. slik at a1 > 0 og a0 > 0. Dette
kan vises ved å studere polynomet, (s+λ1)(s+λ2) = s2+(λ1+λ2)s+λ1λ2 = 0 som
har røtter s1 = −λ1 og s2 = −λ2. Dersom røttene skal ligge i venstre halvplan, dvs.
s1 < 0 og s2 < 0 m̊a vi ha at λ1 > 0 og λ2 > 0. Dette betyr igjen at koeffisientene
m̊a være positive, dvs. a0 = λ1λ2 > 0 og a1 = λ1 + λ2 > 0.

Vi f̊ar følgende krav til Kp:

2(1− Kp

Ti
) > 0 og

Kp

Ti
> 0. (2.26)

Dette gir

0 <
Kp

Ti
< 1. (2.27)
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Vi har n̊a simulert det lukede reguleringssystemet for forskjellige verdier for Kp etter
at vi p̊atrykker et enhetssprang i referansen. Resultatet er vist i figur 2.3. Vi ser at
systemet f̊ar mer oversving og oscillatorisk oppførsel n̊ar Kp øker mot en. Samtidig
ser vi at systemet f̊ar en større og større inversrespons som starter ved tiden t = 0.
Inversrespons er et typisk fenomen for systemer med nullpunkt i høyre halvplan.

Vi ser av figuren at det ikke er enkelt å samtidig f̊a til rask innsvingning, lite oversv-
ing og liten inversrespons. Grunnen til disse problemene er at systemet har ett
nullpunkt i høyre halvplan. Inversresponsen i prosessen kan vi ikke gjre noe med.
Den forefinnes ogs i settpunkts-responsen til det lukkede (regulerte) systemet. Litt
prving og feiling med valg av Kp gir følgende innstilling:

Kp = 0.42, Ti = 1. (2.28)

Denne innstillingen gir en forsterkningsmargin,GM = 2.8 [dB], og en fasemargin,
PM = 71◦.
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Figure 2.3: Unit step response (in the reference) simulation of a control system with
process model, hp(s) = 1−2s

(s+1)(s+2) , and PI-controller hc(s) = Kp
1+Tis
Tis

with Ti = 1
and for varying proportional coefficients in the interval, 0.1 ≤ Kp ≤ 0.9. Figuren er
generert av MATLAB scriptet siso zero ex.m.

Example 2.3 (PI-regulering av ikke-minimum-fase SISO system)
Gitt et system beskrevet med transferfunksjonen

hp(s) =
1− 2s

s2 + 3s+ 2
=

1− 2s

(s+ 1)(s+ 2)
. (2.29)

Systemets frekvensrespons er gitt ved

hp(jω) = |hp(jω)|ej∠hp(jω), (2.30)

der fase og amplitude-karakteristikkene er gitt ved

∠hp(jω) = −(arctan(2ω) + arctan(ω) + arctan(
ω

2
)), (2.31)



26 Multivariable Frequency Analysis

|hp(jω)| =
√
1 + 4ω2

√
1 + ω2

√
4 + ω2

. (2.32)

Fase kryss-frekvensen (kritisk frekvens), ω180, er da gitt ved den frekvens der fasen er
−180◦, dvs., ∠hp(jω180) = −π. Den kritiske forsterkning, Kcu, er da den forsterkn-
ing som er slik at Kcu|hp(jω180)| = 1. Parametrene Kcu og ω180 kan f.eks. finnes
vha. MATLAB funksjonen margin. Vi f̊ar

ω180 = 1.8708, (2.33)

Kcu = 1.5. (2.34)

Vi kan n̊a enkelt finne parametrene i en PI-regulator gitt ved

hc(s) = Kp
1 + Tis

Tis
. (2.35)

vha. Ziegler-Nichols metode. Dvs.

Kp =
Kcu

2.2
= 0.68, Pu =

2π

ω180
= 3.36, Ti =

Pu

1.2
= 2.79. (2.36)

Det viser seg ved simulering at responsen i y blir relativt d̊arlig med dette valg av
PI-regulator parametre.

Det lukkede systemet kan videre analyseres som følger. Transferfunksjonen fra r til
y er gitt ved:

y

r
=

h0
1 + h0

=

Kp

Ti
(1− 2s)(1 + Tis)

s3 + (3− 2Kp)s2 + (Kp − 2
Kp

Ti
+ 2)s+

Kp

Ti

. (2.37)

Eksempel 2.6.1 (Styrbarhet av system med to like modi)
Gitt et system ẋ = Ax+Bu der

A =

[
λ 0
0 λ

]
. (2.38)

Vi skal vise at et slikt system ikke er styrbart for noen B =

[
b1
b2

]
.

Vi har at AB = λB og dermed at styrbarhetsmatrisen er gitt ved

C2 =
[
B AB

]
=

[
B λB

]
. (2.39)

Systemet er ikke styrbart fordi rang(C2) < n = 2. Forsøk å argumentere for dette
ved fysiske betraktninger.

Eksempel 2.6.2 (Styrbarhet av system med tre like modi)
Vi skal vise at et system med

A =

 λ 0 0
0 λ 1
0 0 λ

 (2.40)
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ikke er styrbart for noen B =
[
b1 b2 b3

]T
. Styrbarhetsmatrisen er i dette tilfellet

gitt ved

C3 =
[
B AB A2B

]
=

 b1 λb1 λ2b1
b2 λb2 + b3 λ2b2 + 2λb3
b3 λb3 λ2b3

 (2.41)

Vi ser at rekke en i C3 er lik rekke tre multiplisert med faktoren b1
b3
. Vi har dermed

at rang(C3) < n = 3. Systemet er dermed ikke styrbart.

Dersom systemet endres til (Jordan form)

A =

 λ 1 0
0 λ 1
0 0 λ

 (2.42)

kan vi vise at systemet er styrbart for alle B =
[
b1 b2 b3

]T ̸= 0.

Eksempel 2.6.3 (Inversrespons i tilstandsrom og transferfunksjon)
Gitt et system med tilstandsrommodell

ẋ = − 1

T
x+ k

T + τ

T 2
u, (2.43)

y = x− kτ

T
u. (2.44)

Dette er ekvivalent med transferfunksjonsmodellen

y

u
= k

1− τs

1 + Ts
. (2.45)

Dette systemet har en inversrespons p̊a grunn av nullpunktet, s0 = 1
τ i høyre halv-

plan. Merk at inversresponsen 1−τs er en approksimasjon til en transportforsinkelse
fordi e−τs ≈ 1−τs. Modellen (2.45) er ett gunstig utgangspunkt for regulatorsyntese.

Eksempel 2.6.4 (Inversrespons og modellrediksjon ved halveringsregel)
Gitt et system beskrevet med transferfunksjonen

hp(s) =
1− 2s

(s+ 1)(s+ 2)
= k

1− τs

(1 + T1s)(1 + T2s)
, (2.46)

der

k =
1

2
, τ = 2, T1 = 1, T2 =

1

2
. (2.47)

En god approksimasjon for regulatorsyntese er

hp(s) = k
1− τs

1 + T1s
, (2.48)

der k = 1
2 og τ og T1 finnes fra ”halveringsregelen”.

τ := τ +
1

2
T2 = 2 +

1

4
=

9

4
, (2.49)

T1 := T1 +
1

2
T2 = 1 +

1

4
=

5

4
. (2.50)
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En god PI-regulator innstilling er dermed gitt ved

Ti = T1 =
5

4
≈ 1.25, (2.51)

og

Kp =
1

2

T1

kτ
=

5

9
≈ 0.56. (2.52)
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Part II

OPTIMAL CONTROL





Chapter 3

Introduction to Continuous
Time Linear Quadratic Optimal
Control

3.1 Introduction to linear quadratic optimal control

We shall in this section give a presentation of the continuous time Linear Quadratic
(LQ) optimal control problem and its solution.

Problem 3.1 (Linear Quadratic Optimal Control)
Assume that the process is modeled by

ẋ = Ax+Bu, (3.1)

with known initial state x(t = t0) = x0, and that we want a control specified by

u = Gx, (3.2)

which gives a minimum of the Linear Quadratic (LQ) performance criterion or per-
formance index

J =

∫ t1

t0

(xTQx+ uTPu)dt, (3.3)

with long or infinite settling time t1.
△

We will in this section for the sake of simplicity putting t0 = 0. Long settling time
means that the time interval [0, t1 > is assumed to be greater than the time constants
of the process, or simply infinity.

We will now show that the solution to this problem gives an expression for the feed-
back matrix G which when applied to the system yields some remarkable properties
of the closed loop system.
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Substitute the control u = Gx into the performance index. We have

ẋ = (A+BG)x, (3.4)

J =

∫ ∞

0
xT (Q+GTPG)xdt. (3.5)

The solution of Equation (3.1) is given by

x = e(A+BG)tx0, (3.6)

where x0 is the initial values at time zero, i.e. x0 = x(t = 0). Substitute the solution
into the performance index and we get

J = xT0 [

∫ ∞

0
e(A+BG)T t(Q+GTPG)e(A+BG)tdt]x0

def
= xT0 Rx0, (3.7)

where we have defined

R
def
=

∫ ∞

0
e(A+BG)T t(Q+GTPG)e(A+BG)tdt. (3.8)

We want a feedback matrix G such that the performance index reach a minimum
value. Hence, the performance index J must be finite. This means that the closed
loop system matrix A+BG must be stable.

We know from observability analysis that R is the observability Gramian for the
system described by the pair (

√
Q+GTPG,A+BG) and that this Gramian satisfy

the following Lyapunov matrix equation

(A+BG)TR+R(A+BG) +Q+GTPG = 0. (3.9)

Define the following scalar function

J̃ = xT0 [(A+BG)TR+R(A+BG) +Q+GTPG]x0

= tr(x0x
T
0 [(A+BG)TR+R(A+BG) +Q+GTPG]). (3.10)

The minimization of J̃ with respect to the feedback matrix G is the same as to
minimize the performance index J with respect to G. The following can be used to
see this

R = [(A+BG)TR+R(A+BG) +Q+GTPG] +R. (3.11)

Premultiplication with xT0 and postmultiplication with x0 gives

J = J̃ + J, (3.12)

where J is defined by (3.7) and J̃ is defined in (3.10). Hence, we have

min
G

J = min
G

J̃ +min
G

J, (3.13)

which is equivalent to minimize J̃ with respect to G. The minimum of J̃ with respect
to G is determined from

dJ̃

dG
= x0x

T
0 (2B

TR+ 2PG) = 0. (3.14)
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We have for the minimum that G is given by

G = −P−1BTR, (3.15)

and which substituted into the Lyapunov equation gives

ATR+RA−RHR+Q = 0, (3.16)

H = BP−1BT , (3.17)

which is the famous matrix Algebraic Riccati Equation (ARE). The ARE is named
after Count Jacopo Francesco Riccati and his original paper published in 1724. See
Bittanti (1989).

3.2 Some simple examples

Example 3.1 (Design of LQ optimal PI controller)
Assume that the process is modeled by

ẋ = ax+ bu, (3.18)

y = x. (3.19)

The problem is to design a LQ optimal PI-controller for the process. A state space
formulation of a PI controller is given by

ż = y0 − y, (3.20)

u = g1x+ g2z, (3.21)

where g1 = Kp and g2 =
Kp

Ti
.

The first step in the solution procedure is to make an augmented model for the process
and the controller. We have

˙̃x =

[
a 0

−1 0

]
x̃+

[
b
0

]
u+

[
0
1

]
y0, (3.22)

where

x̃ =

[
x
z

]
. (3.23)

The second step in the solution procedure is to choose a Linear Quadratic perfor-
mance index. We will choose a diagonal weighting matrix Q for the augmented state
vector. We have

J =

∫ T

0
(x̃T

[
q11 0
0 q22

]
x̃+ uT pu)dt. (3.24)

We will now choose the settling time T to be large compared to the time constants
in the augmented system. The solution to this infinite time horizon LQ problem can
then be found by solving the ARE.
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The third step is to solve the Algebraic Riccati Equation (ARE) for the optimal
control, u = Gx̃, that minimize the quadratic performance index. I.e. we have to
solve

H = BP−1BT , (3.25)

ATR+RA−RHR+Q = 0, (3.26)

G = −P−1BTR. (3.27)

We have [
a −1
0 0

] [
r11 r12
r12 r22

]
+

[
r11 r12
r12 r22

] [
a 0

−1 0

]
− (3.28)[

r11 r12
r12 r22

] [
h 0
0 0

] [
r11 r12
r12 r22

]
+

[
q11 0
0 q22

]
=

[
0 0
0 0

]
. (3.29)

where h = bp−1b. We then get

2ar11 − 2r12 − hr211 + q11 = 0, (3.30)

ar12 − r22− r11hr12 = 0, (3.31)

q22 − hr212 = 0. (3.32)

The control is given by

u = −p−1br11x− p−1br12z. (3.33)

This gives

r12 = ±
√

q22
h

, (3.34)

r11 =
a±

√
a2 + h(q11 − 2r12)

h
, (3.35)

r22 = ar11 − hr11r12. (3.36)

We have to chose the positive definite (maximum) solution to the ARE. Hence

r12 = −
√

q22
h

, (3.37)

r11 =
a+

√
a2 + h(q11 − 2r12)

h
, (3.38)

r22 = ar12 − hr11r12. (3.39)

We have

g1 = − b

p
r11, (3.40)

g2 = − b

p
r12 = sgn(b)

√
q22
p
. (3.41)

Note that the external set-point signal y0 was put to zero when designing the LQ
optimal PI controller. However, the controller can be applied to a plant with y0 ̸= 0.
However, in this case the solution is not necessary optimal.
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Example 3.2 (Double integrator)
Consider an idealized angular position control system where the position of the ro-
tation shaft is controlled by the torque applied, with no friction in the system. The
equation of motion is given by

Jθ̈ = T, (3.42)

where θ is the angular position, T is the applied torque and J is the moment of
inertia of the rotating parts. Define

x1 = θ, (3.43)

x2 = θ̇, (3.44)

u = T, (3.45)

b =
1

J
. (3.46)

We have the following state space model[
ẋ1
ẋ2

]
=

[
0 1
0 0

] [
x1
x2

]
+

[
0
b

]
u. (3.47)

We choose the following LQ index

J =

∫ ∞

0
(
[
x1 x2

] [ q11 0
0 q22

] [
x1
x2

]
+ uTPu)dt, (3.48)

which is equivalent to

J =

∫ ∞

0
(q11x

2
1 + q22x

2
2 + pu2)dt. (3.49)

The ARE is in this case given by[
0 0
1 0

] [
r11 r12
r12 r22

]
+

[
r11 r12
r12 r22

] [
0 1
0 0

]
− (3.50)[

r11 r12
r12 r22

] [
0 0
0 h

] [
r11 r12
r12 r22

]
+

[
q11 0
0 q22

]
=

[
0 0
0 0

]
. (3.51)

where h = bp−1b. We get[
−hr212 + q11 r11 − hr22r12

r11 − hr22r12 2r12 − hr222 + q22

]
=

[
0 0
0 0

]
. (3.52)

For this 2nd order example, there are 2n = 4 solutions to the ARE. We want the
unique positive definite solution, corresponding to the stable closed loop eigenvalues.
Hence

r12 =

√
q11
h

, (3.53)

r22 =

√
2r12 + q22

h
=

√√√√2
√

q11
h + q22

h
. (3.54)
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The optimal control is given by

u = −P−1BTRx = g1x1 + g2x2, (3.55)

where the feedback gain values g1 and g2 are given by

g1 = − b
pr12 = − b√

b2

√
q11
p , (3.56)

g2 = − b
pr22 = − b

b2

√
2r12+q22

p . (3.57)

Note that the fractions q11
p and q22

p are involved in the feedback elements.



Chapter 4

Optimal Control of Continuous
Time Systems
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4.1 The maximum principle for continuous time sys-
tems

Given a process

ẋ = f(x, u, t). (4.1)

We will assume that the initial state is given, i.e., the initial value of the state vector
x(t0) is given (known).

For the final state vector x(t1) we consider the following cases

1. x(t1) given.

2. x(t1) should belong to a specified domain.

3. x(t1) is completely free.

4. x(t1) can be weighted in an optimal criterion.

The optimal criterion os of the form

J = S(x(t1)) +

∫ t1

t0

L(x, u, t)dt, (4.2)

where we assume that the starting time t0 is given. Often we only consider t0 = 0.
The final time instant t1 can be given ore a free variable.

The optimal control problem is now to minimize (alternatively maximize) the op-
timal control criterion J with respect to the control function u(t) over the time
horizon t0 ≤ t ≤ t1. This can be formulated as follows

min
u∈U

J (4.3)

where U denotes the control space. Note that we have the process model ẋ =
f(x, u, t) as a bi-constraint to the optimization problem.

The first which is defined is the so called Hamiltonian function

H(x, p, u, t) = L(x, u, t) + pT f(x, u, t), (4.4)

where we have included and defined the so called impulse vector p(t). The impulse
vector can be viewed as an Lagrange multiplier which is used in order to reformulate
the optimization problem with constraints to a problem without constraints. The
optimal control function, u(t), may now be found as the optimum of the hamiltonian
function (4.4). This will be shown in the following.

In order for the control function u(t) ∈ U to be the optimal control which minimizes
J it is necessary that:

�

ẋ =
∂H

∂p
, (4.5)
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with given initial state x(t0). The final state condition x(t1) may be as specified
above.

The impulse vector satisfies

ṗ = −∂H

∂x
, (4.6)

The border conditions for the impulse vector is only given and defined at the
final time t1. We consider the following case

p(t1) =
∂S
∂x

∣∣
t1

(4.7)

� The Hamiltonian function H must have a global minimum with respect to the
control function u(t) ∈ U ∀ t0 ≤ t ≤ t1 such that

u∗ = arg min
u(t)∈U

H(x, p, u, t), (4.8)

is the optimal control function.

� Conditions for minimum is then

∂H

∂u
= 0, (4.9)

and in order for a minimum problem

∂2H

∂u2
> 0. (4.10)

� In case that the final time t1 is not specified, then we must have that

H(t1) = −∂S
∂t

∣∣
t1

(4.11)

Usually we have that the function S(x(t1)) is independent of time t. In this
case this condition simply reduces to

H(t1) = 0 (4.12)

The Maximum Principle was first presented by Pontryagin (1956). We will later
on use the Maximum Principle in order to solve many linear optimal control prob-
lems. The Maximum Principle can also be used to solve non-linear optimal control
problems. Note that the optimal solution in (4.8) usually gives an open loop control
strategy in which the controls are computed in advance. However, there is important
special cases which gives a optimal feedback control structure.
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4.2 Linear systems with Quadratic criterions

Given a linear continuous time system described by the state space model

ẋ = Ax+Bu, (4.13)

with initial state vector x(t0) at initial time instant t0. The optimal criterion or
performance index, valid over the time horizon t0 ≤ t ≤ t1, is assumed given by the
following Linear Quadratic (LQ) function

J =
1

2
xT (t1)Sx(t1)) +

1

2

∫ t1

t0

[xTQx+ uTPu]dt. (4.14)

This criterion is referred to as a Linear Quadratic (LQ) criterion.

There are some demands for the weighting matrices S, Q and P in order for the
optimal problem to have a solution.

First of all, S, Q and P are symmetric weighting matrices. We will also show that
the control weighting matrix P must be positive definite. Furthermore, it is sufficient
that the weighting matrices S and Q are positive semi definite. We will discuss those
demands later.

We start by defining the Hamiltonian function

H =
1

2
(xTQx+ uTPu) + pT (Ax+Bu). (4.15)

We are to minimize H with respect to u. A necessary condition for a minimum is
found by putting the gradient of H with respect to u equal to zero, i.e.,

∂H

∂u
= Pu+BT p = 0. (4.16)

This gives the following control

u = −P−1BT p. (4.17)

We now have to find an expression for the impulse vector p and we will later on
show that there is a relationship p = Rx where R is the solution to a matrix Riccati
equation. However, let us first look at the second derivative of H with respect to u,
i.e. the sufficient condition for a minimum. We have

∂2H

∂u2
= P. (4.18)

The second order derivative is is connection with optimization theory often referred
to as the hessian matrix. A condition for that the control given by (4.17) at least
should result in a minimum criterion value is that the Hessian matrix is positive
definite. This means that we must demand the control weighting matrix to be
positive definite, i.e., P > 0 in order to guarantee a minimum.

As we see, in order to compute the optimal control from (4.17) we must find en
expression for the impulse vector p. The impulse vector p is defined from (4.17). We
have

ṗ = −∂H

∂x
= −Qx−AT p, (4.19)



4.2 Linear systems with Quadratic criterions 41

and from equation (4.7) we obtain

p(t1) =
∂
∂x(

1
2x

T (t1)Sx(t1))
∣∣
t1
= Sx(t1). (4.20)

As we see, there is a linear relationship between the impulse vector p and the state
vector x at the final time instant t1. We will later on show that this also is the case
for all time instants t0 ≤ t ≤ t1.

From equation (4.5) we obtain

ẋ =
∂H

∂p
= Ax+Bu, (4.21)

which is identical to the system model, i.e., this gives no further information. We
are now putting the optimal control given by (4.17) into(4.21) and obtain

ẋ = Ax−Hp, (4.22)

where we have defined the matrix

H = BP−1BT . (4.23)

We will now prove a linear relationship p = Rx between the state vector x and the
impulse vector p. By viewing the equations for ẋ and ṗ, we see that they form an
autonomous system, i.e., [

ẋ
ṗ

]
= F

[
x
p

]
, (4.24)

where the matrix F is given by

F =

[
A −H

−Q −AT

]
. (4.25)

The matrix F is denoted the Hamiltonian matrix for the autonomous system. This
matrix is also very central in connection with the LQ optimal control solution.

We will now show that there is a linear relationship between p and x for all t0 ≤ t ≤
t1. This relationship will result in a very simple formulation of the optimal control
given by (4.17).

For given border conditions x(t1) and p(t1) at the final time t = t1 we have that the
solution of the autonomous system is given by[

x(t1)
p(t1)

]
= Φ(t1, t)

[
x
p

]
, (4.26)

where Φ is the transition matrix

Φ(t1, t) = eF (t1−t) =

[
Φ11 Φ12

Φ21 Φ22

]
. (4.27)

Hence, we have the following two equations

x(t1) = Φ11x+Φ12p, (4.28)

p(t1) = Φ21x+Φ22p = Sx(t1), (4.29)
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where we in (4.29) have used the expression for p(t1) given by (4.20). Combin-
ing Equations (4.28) and (4.29) gives (i.e. we have put x(t1) given by (4.28) into
Equation (4.29)), i.e.

p = Rx, (4.30)

where

R = [Φ22 − SΦ12]
−1[SΦ11 − Φ21]. (4.31)

If we are letting t = t1 in (4.27) then we have that Φ(t1, t1) = I2n. This means that
the corresponding sub matrices are Φ11 = Φ22 = In and Φ12 = Φ21 = 0n. Putting
this into (4.31) gives the following border condition for R at the final time instant
t = t1, i.e.,

R(t1) = S. (4.32)

We have now found that the optimal control is given by

u = G(t)x, (4.33)

where

G(t) = −P−1BTR(t), (4.34)

is the LQ optimal feedback matrix. In order to compute G(t) we have to compute an
expression for R. The matrix R is in general time dependent and given by Equation
(4.31) with border condition as in Equation (4.32). The matrix R can in principle
be computed as in Equation (4.31). However, we will below show that thee exist
a method which does not involve the explicit problem of evaluating the transition
matrix, i.e. the matrix exponent in (4.31),

We will now show that R satisfies a matrix differential equation, i.e., the so called
Riccati equation. From (4.30) we have that

ṗ = Ṙx+Rẋ. (4.35)

from (4.19), (4.21), (4.30) and (4.33) we find that

ẋ = (A−BP−1BTR)x, (4.36)

ṗ = (−Q−ATR)x. (4.37)

Putting ṗ and ẋ given by Equations (4.36) and (4.37) into equation (4.35) gives,

(Ṙ+ATR+RA−RBP−1BTR+Q)x = 0. (4.38)

Since the state vector x may be arbitrarily different from zero (i.e. x ̸= 0), at least
close to the initial time t = t0, then we have that

ATR+RA−RBP−1BTR+Q = −Ṙ. (4.39)

This is a so called matrix differential Riccati equation with border condition as given
by Equation (4.32). We see that the matrix R is a solution to the Riccati equation
(4.39).
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The solution of the Riccati equation is of central importance for the optimal feedback
given by (4.33) and (4.34). Hence, it is of importance to note the following moments
with the Riccati equation. The Riccati equation have border conditions at the final
time, i.e., R(t1) = S. The Riccati equation is therefore solved backward in time, i.e.
from the final time t1 and backward to the present time instant t in order to compute
R(t) which is used to compute the present optimal control u(t) = −P−1BTR(t)x(t).
The Riccati equation have 2n solutions. From all those 2n solutions there is only
one unique positive definite and symmetric solution R > 0. This positive definite
solution R is to be used in order to compute the optimal control.

Furthermore, it can be shown that the minimum value of the optimal criterion over
the optimization horizon t0 ≤ t ≤ t1 is given by

J∗ = x(t0)
TR(t0)x(t0). (4.40)

As we see, the minimum criterion value is dependent of the initial state x(t0) as well
as the solution of the Riccati equation R(t0) at time t = t0.

4.3 Constant running time horizon (Receding horizon)

We have in the above Section 4.2 considered a fixed optimization interval t0 ≤ t ≤ t1.
A special case of great interest is to consider a running constant optimization horizon
in which t0 = t and t1 = t + T where T is the usually constant prediction horizon.
The standard optimization criterion will in this case be of the form

J(t) =
1

2
x(t+ T )TSx(t+ T ) +

1

2

∫ t+T

t
[xTQx+ uTPu]dt. (4.41)

where S ≥ 0, Q ≥ 0 and P > 0 are symmetric weighting matrices. The weighting
matrices may in general be time varying matrices.

From Equations (4.31) and (4.27) we see that R is a function of the time horizon
t1 − t. In this case we have that t1 − t = T is constant and therefore we have that
R = R(T ) is a constant matrix and not dependent of time t. Furthermore this
gives a constant feedback matrix G = G(T ) = −P−1BTR(T ). This means that
the feedback matrix only is dependent of the constant horizon T , which usually is
referred to as the prediction horizon in Model Predictive Control (MPC).

Minimization of this criterion with respect to the process model ẋ = Ax+Bu with
respect to the control vector u gives the optimal control u∗ at the present time t,
i.e., u∗(t) = Gx(t). However, all the optimal control over the optimization horizon
[t, t+T > are computed. However, the optimization problem is recalculated at each
new time instant. It can therefore be natural to only use the control u∗ at time t.
The most important motivation behind this is that the optimal control is simply
u∗(t) = Gx(t) where G = G(T ) which can be computed off line and in advance.

Basically we have an optimization problem at each time instant t. At the present
time t a prediction T time units into the future is performed. Note however, that
we does not have any constraints on the inputs ore process outputs ore states, we
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have that the optimal control is given by u∗ = G(T )x where G(T ) is constant and
only dependent of the prediction horizon, as well as the matrices A,B, P,Q, S. We
therefore, in this unconstrained LQ optimization problem, with receding horizon,
does not need to recompute the optimal solution. The above discussion also holds
for unconstrained Model Predictive Control (MPC).

The optimization control problem with constant running optimization time horizon
is referred to as receding horizon control.

The above details is described in Balchen (1970). The basic Model Predictive Control
(MPC) theory is therefore not new and described in many text books on optimal
control theory.

4.4 LQ optimal control with infinite time horizon

A special case of great importance is obtained by putting the horizons to be large,
ore infinite, i.e. T → ∞ or t1 → ∞. This means in practice that the optimization
time interval is sufficiently larger than the time constants in the system 8closed loop
system), i.e. that t1 is large. The Riccati equation is a stable matrix differential
equation which converges to a constant solution R if the final time t1 is large. This
again means that we obtain a constant feedback matrix G and feedback u = Gx. It
gives in this case no meaning of weighting the states in infinity, that at time t1 = ∞.
We therefore let S = 0. It can also be proved that the solution to this problem is
independent of S. The optimal criterion becomes in this case

J =
1

2

∫ ∞

t0

[xTQx+ uTPu]dt. (4.42)

In this case we say that R is a solution to The Algebraic Riccati Equation (ARE),
i.e.,

ATR+RA−RBP−1BTR+Q = 0, (4.43)

because Ṙ = 0 when t1 → ∞.

If a minimum of the objective J given by Eq. (4.42) exist, then J have to converge
against a finite value when time approach infinity. This implies that the state, x = 0,
when t → ∞ and that the control approaches u = 0 because u = Gx.

If the system is unstable then x → ∞ when t → ∞. In such a case there will not be
a finite value on the objective J and there will not exist an optimal solution.

There exist some requirements to the weighting matrices Q and P for the solution
to the LQ optimal control problem to give a stable closed loop (controlled) problem.
We have the following important theorem about stability in LQ optimal control
systems with infinite setling time (infinite horizon).

Theorem 4.4.1 (Stability of LQ optimal systems)
Given a continuous time invariant system ẋ = Ax+Bu and a Linear Quadratic (LQ)
objective with infinite time horizon (t1 → ∞) with weighting matrices Q = DTD
and P > 0.
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The optimal control is of state feedback type u∗ = Gx with feedback gain matrix
G = −P−1BTR, where R is the unique positive definite solution to the Algebraic
Riccati Equation (ARE). The optimal controller gives a stable closed loop system,
i.e. the eigenvalues of A + BG is located in the left part of the complex plane, if
and only if the pair (A,B) is stabilizable and the pair (A,D) is detectable.
△

Note that in connection with this theorem, that the product DTD may be a square
root factorization of Q. Some times we also equivalently says that the pair (A,

√
Q)

should be detectable.

4.5 Solution of the Algebraic Riccati Equation

There exist many methods for solving the Algebraic Riccati Equation (ARE), i.e.,

ATR+RA−R

H︷ ︸︸ ︷
BP−1BT R+Q = 0, (4.44)

where H = BP−1BT is the Hamiltonian matrix.

Possibly the best and most stable method is based on a Schur decomposition of
the Hamiltonian matrix. It can be shown that the positive definite solution R of
the ARE may be expressed in terms of the eigenvectors connected to the stable
eigenvalues of the Hamiltonian matrix F . Furthermore, it is also possibile to find
all 2n solutions of the ARE from this method, but remember that we usually only
need the unique positive definite solution R for control purposes.

Given a real Schur decomposition of the Hamiltonian matrix F , i.e.,

F︷ ︸︸ ︷[
A −H
−Q −AT

] U︷ ︸︸ ︷[
U11 U12

U21 U22

]
=

U︷ ︸︸ ︷[
U11 U12

U21 U22

] T︷ ︸︸ ︷[
T11 T12

0 T22

]
. (4.45)

where U and T are real matrices obtained from the real Schur decomposition F =
UTUT . The matrix U contains the Schur eigenvectors to the matrix F . Furthermore
U is an orthogonal matrix such that U−1 = UT . T is an upper block triangular
matrix with 1×1 or 2×2 blocks on the diagonal. Real eigenvalues of F is contained
in the 1× 1 on the diagonal. Complex conjugate eigenvalues of F are contained in
2× 2 on the diagonal of T .

Furthermore the Schur decomposition (eigenvalues and eigenvectors) may be ordered
such that the eigenvalues (of F and T ) may be ordered in an arbitrarily specified
order along the diagonal of T . Hence, we may order the Schur decomposition such
that all n stable eigenvalues is located in the T11 part and all n unstable eigenvelues
in T22. We then have that

F = UTUT (4.46)

It can be shown that the unique solution to the Riccati equation may be expressed
in terms of the Schur eigenvectors of U of the Hamiltonian matrix F . When U11 is
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non-singular, then

R = U21U
−1
11 , (4.47)

is the unique positive definite solution to the Algebraic Riccati Equation (ARE)

ATR+RA−RHR+Q = 0. (4.48)

where H = BP−1BT . Here we assume that the stable eigenvalues of F are located
in T11 and the Schur decomposition as in (4.45).

It can be shown that the eigenvalues of the closed loop system A + BG where
G = −P−1BTR is given by the eigenvalues of T11, and located on the diagonal
(1× 1 and 2× 2 blocks on the diagonal of T11.

In connection with the optimal solution to the LQ control problem we want the
unique positive definite solution R of the ARE which results in a stable closed loop
system. Hence, the Schur decomposition have to be ordered such that the matrix
T11 contains the stable eigenvalues of the Hamiltonian matrix.

4.6 Linear system with disturbance

Assume that the process can be described by the following linear continuous time
state space model

ẋ = Ax+Bu+ Cv, (4.49)

y = Dx, (4.50)

where v is a vector of process noise (disturbances). We will in this section assume
that the process noise,v, is colored. This means that v has a mean value different
from zero and that the noise is time varying. We will assume that v is measured or
estimated in an estimator.

In case when v is withe Gausian noise with zero mean, then it can be shown that the
solution to the LQ optimal control problem is identical to the LQ optimal solution
which is obtained for v = 0. This solution consists as we have shown of a state
feedback, u = G(t)x.

We will in the following sections show that in case when v is colored then the LQ
optimal solution will consists of a feedback from the state, x, and a feed forward
from the disturbance,v.

4.6.1 Solution by reformulating the problem as a standard LQ
problem

The solution which is described in this section is dependent on a model for the
process disturbance. The disturbance may often be modelled. Assume that the
surrounding which generates the disturbance may be modelled by a linear state
space model of the form

ẋ2 = Ex2 + Fn, (4.51)

v = Hx2, (4.52)
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where n is a rudimentary disturbance which excites the surrounding disturbance
model. By rudimentary we mean a stylized noise, e.g. n may be white Gausian
noise with zero mean, ore an impulse at time t0 = 0.

In case when the process disturbance which influence upon the process is constant
ore slowly varying, then we can describe the noise model simply as

v̇ = Fn. (4.53)

where n is a rudimentary noise process. In case of a constant disturbance the noise
model is given by

v̇ = 0. (4.54)

The process model and the disturbance model can be augmented together to a linear
state space model given as follows,

˙̃x = Ãx̃+ B̃u+ C̃n, (4.55)

(4.56)

where

Ã =

[
A CH
0 E

]
, (4.57)

B̃ =

[
B
0

]
, (4.58)

C̃ =

[
0
F

]
. (4.59)

Since the noise vector n is rudimentary it will not influence upon the LQ optimal
control problem.

We are now choosing a standard LQ optimal criterion given as follows

J =
1

2
x̃T (t1)S̃x̃+

1

2

∫ t1

t0

(x̃T Q̃x̃+ uTPu)dt (4.60)

where

Q̃ =

[
Q 0
0 Q2

]
, S̃ =

[
S 0
0 S2

]
. (4.61)

Q and S are weighting matrices for the process state x. Q2 and S2 is weighting
matrices for the state vector x2 in the surrounding noise model which generates the
disturbance v. We often have little knowledge of how to weight the states in the
noise model so often we are putting Q2 = 0 and S2 = 0. In this case the criterion is
simply

J =
1

2
xT (t1)Sx(t1) +

1

2

∫ t1

t0

(xTQx+ uTPu)dt (4.62)
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The solution to the LQ optimal control problem is now given by

u = −P−1B̃TRx̃, (4.63)

where R is the positive definite solution to the Riccati equation

ÃTR+RÃ−RB̃P−1B̃TR+ Q̃ = −Ṙ. (4.64)

The boundary conditions for the Riccati equations becomes in this case R(t1) = S.
If we does not have any weighting of the final state in the LQ criterion then we
have that S = 0 and the boundary conditions become R(t1) = 0. This is always
reasonable when t1 is large.

Let us study the LQ optimal solution. The solution to the Riccati equation can be
presented as follows

R =

[
R11 R12

R21 R22

]
, (4.65)

where R21 = RT
12, R11 = RT

11 and R22 = RT
22 because R is a symmetric matrix. The

optimal control can therefore be written as follows

u = −P−1
[
BT 0

] [R11 R12

R21 R22

] [
x
x2

]
= G1x+G2x2, (4.66)

where

G1 = −P−1BTR11, (4.67)

G2 = −P−1BTR12. (4.68)

As we see, the LQ optimal control u consists of a feed back from the process state
vector x and a feed forward from the state vector x2 in the surrounding noise model.
The solution demands that both state vectors x and x2 is available, measured ore
estimated in state estimators.

By studying the Riccati equation we find that

ATR11 +R11A−R11BP−1BTR11 +Q = −Ṙ11, (4.69)

and

R11CH +R12E + (A−BP−1BTR11)
TR12 = −Ṙ12. (4.70)

We have here used that Q2 = 0 and that R11 is symmetric. The boundary conditions
becomes R11(t1) = S and R12(t1) = 0.

We note that the feedback matrix G1 from the process state vector x is independent
of the surrounding noise model which generates the disturbance v. However, on
the other side we see that the feed forward from the state x2 in the noise model is
dependent on R11 and thereby the feedback.
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Assume an infinite time horizon and the noise model v̇ = 0. Then we have that

R12 = −(A+BG1)
−TR11C (4.71)

and the feed forward matrix from v to u is given by

G2 = P−1BT (A+BG1)
−TR11C. (4.72)

As we see, the optimal solution is only dependent on the solution R11 of the station-
ary algebraic Riccati equation.

4.6.2 Solution by the use of the maximum principle

One advantage of the solution presented in this section is that we does not need an
explicit model for the disturbance, v. However, as we will see, the optimal solution
is based on known future disturbances. But in case of large or infinite optimization
horizon the solution is considerably simplified and consists of feedback from the
states, x, and feed forward from measured or estimated disturbances, v.

When using the maximum principle we first define the Hamiltonian function

H =
1

2
(xTQx+ uTPu) + pT (Ax+Bu+ Cv). (4.73)

We will now assume that the impulse vector p is given by the relationship

p = Rx+ h, (4.74)

where h at this stage is an unknown time varying vector function. Think of the term
h as a feed forward function due to the non-zero process disturbances v. Hence, we
have

ṗ = Ṙx+Rẋ+ ḣ. (4.75)

We now put the equations for ṗ and ẋ as well as the optimal control u = −P−1BT p
into Equation (4.75)-

From the maximum principle we have that

ṗ = −∂H

∂x
= −Qx−AT p. (4.76)

Putting p given by (4.74) ito (4.76) gives

ṗ = −Qx−AT

p︷ ︸︸ ︷
(Rx+ h) = −Qx−ATRx−ATh. (4.77)

Furthermore, the optimal control is of the form

∂H

∂u
= 0 ⇒ u∗ = −P−1BT p. (4.78)

Inserting (4.74) into (4.78) gives

u∗ = −P−1BTRx− P−1BTh. (4.79)
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As we see, the optimal control is generated through a feedback from the state vector,
x, and a feed forward from the feed forward signal vector h. In order to obtain a
complete solution we have to find the matrix R and the vector h.

Putting the optimal control given by (4.78) into the process model ẋ = Ax+Bu+Cv
gives,

ẋ = (A−BP−1BTR)x−BP−1BTh+ Cv. (4.80)

Inserting (4.80) into the equation for ṗ given by (4.75) gives

ṗ = (Ṙ+RA+ATR−RBP−1BTR)x

+ḣ+RCv −RBP−1BTh. (4.81)

Inserting ṗ given by (4.77) gives

(Ṙ+RA+ATR−RBP−1BTR+Q)x

+ḣ+ (A−BP−1BTR)Th+RCv = 0. (4.82)

This must be valid for al x ̸= 0. We also recognize the Riccati equation. Hence,
the matrix R is the solution to the Riccati equation and the feed forward signal h
is given by a differential equation. We have

−Ṙ = RA+ATR−RBP−1BTR+Q, (4.83)

−ḣ = (A+BG1)
Th+RCv, (4.84)

where

G1 = −P−1BTR. (4.85)

The boundary conditions for the differential equations are found as follows. From
the maximum principle, Equation (4.7) we find that

p(t1) =
∂

∂x

[
1
2x(t1)

TSx(t1)
]
t1
= Sx(t1). (4.86)

Putting t = t1 into (4.74) gives

p(t1) = R(t1)x(t1) + h(t1). (4.87)

This must apply to any end state x(t1). Ie. by comparing equations (4.86) and
(4.87) we find the boundary conditions

R(t1) = S, (4.88)

h(t1) = 0. (4.89)

Note that we get the special case R(t1) = 0 and h(t1) = 0 if we do not weight the
state x at the end time, i.e. set S = 0 in the optimal criterion.

We see that equation (4.83) is identical to the Riccati equation which we would find
if we did not have a process disturbance v. We see that the process disturbance does
not affect the optimum the feedback. This is then also expected because forward
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shifts does not affect the stability of the system. The stability of a linear system
can only be operated by feedback.

The optimal forward link given by equation ( ref eq11lm) is however, depending
on the solution of the Riccati equation R (ie. depending on the optimal feedback
system). Note that the solution of (4.84) is given by

h(t1) = e−(A+BG1)T (t1−t)h(t)−
∫ t1

t
e−(A+BG1)T (t1−τ )RCvdτ. (4.90)

We have used equation here (1.9). Equation (4.90) can be solved with respect to
h(t). This gives

h(t) = (e−(A+BG1)T (t1−t))−1h(t1) + (e−(A+BG1)T (t1−t))−1

∫ t1

t
e−(A+BG1)T (t1−τ )RCvdτ.

We use the identity (eA)−1 = e−A to invert a matrix exponent and we have

h(t) = e(A+BG1)T (t1−t)h(t1) + e(A+BG1)T (t1−t)

∫ t1

t
e−(A+BG1)T (t1−τ )RCvdτ.(4.91)

We have the boundary condition (4.89) and thus

h(t) = e(A+BG1)T (t1−t)

∫ t1

t
e−(A+BG1)T (t1−τ )RCvdτ. (4.92)

This can be simplified to

h(t) =

∫ t1

t
e(A+BG1)T (τ−t)RCvdτ. (4.93)

In order to solve this integral and thus find h(t) we have to know the future distur-
bances v(t) over the time interval [t, t1 >.

Pay special attention to the steady state solution. By setting ḣ = 0 into (4.84) we
find that

h = −(A+BG1)
−TRCv (4.94)

We find this answer, and by integrating (4.93) analytical as t1 → ∞.

This provides a constant forward link from the disturbance/interference v. It can
further be shown that this is the solution of the integral (4.93) if v is constant over
the time interval [t, t1 > and if we let ti → ∞. We then have the optimal control

u = G1x+G2v (4.95)

where

G1 = P−1BT (A+BG1)
−TRC. (4.96)
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4.7 Optimal tracking systems

We will in this section study optimal tracing systems. With tracking systems we
mean that the output y of the system is to follow a prescribed reference r in such a
way that a given criterion ore objective function is minimized.

As process model we consider the continuous linear system

ẋ = Ax+Bu+ Cr, (4.97)

y = Dx. (4.98)

Note that we have included the term Cr in the state space model. Normally, we
have C = 0 in connection with standard feedback systems. We will later in Section
4.8 show that it may be practical to use a model with C ̸= 0 in case that we want
integral action in the closed loop controlled system.

the reason for the term Cr is that a standard process model ẋ = Ax + Bu and
y = Dx augmented with an integrator ż = r− y for the controller results in a model
of the type (4.97). We will discuss this later. However, note that the development
will be more general if we work with the term Cr in the process model.

Let us define the deviation between the output y and the reference r by

e = r − y = r −Dx. (4.99)

We are choosing an Linear Quadratic (LQ) criterion where the deviation defined by
(4.99) is weighted, i.e.,

J =
1

2
eT (t1)Se(t1) +

1

2

∫ t1

t0

[eTQe+ uTPu]dt. (4.100)

Substituting for e gives

J = 1
2(r(t1)−Dx(t1))

TS(r(t1)−Dx(t1))

+1
2

∫ t1
t0
[(r −Dx)TQ(r −Dx) + uTPu]dt. (4.101)

where S, Q and P > 0 is symmetric weighting matrices.

We will now solve this problem of minimizing (4.101) subject to the process model
(4.97) and (4.98) by using the maximum principle. We first form the Hamiltonian
matrix,

H =
1

2
[(r −Dx)TQ(r −Dx) + uTPu] + pT (Ax+Bu+ Cr). (4.102)

This can be expressed as follows

H =
1

2
(rTQr − rTQDx− xTDTQr + xTDTQDx+ uTPu) + pT (Ax+Bu+ Cr).(4.103)

The Hamiltonian function is a scalar function. hence, we may write

H =
1

2
(rTQr − 2rTQDx+ xTDTQDx+ uTPu) + pT (Ax+Bu+ Cr). (4.104)
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The optimal control is found by putting the gradient of H with respect to u equal
to zero, i.e.,

∂H

∂u
= Pu+BT p = 0. (4.105)

This gives

u = −P−1BT p. (4.106)

In the same way as for optimal feed forward control from disturbances, v, we may
show that the impulse vector, p, may be expressed as a linear function in the state
vector, x, and of an at this stage unknown vector function h. The function h may
be viewed as a feed forward function du to the external reference vector r. We have

p = Rx+ h. (4.107)

The optimal control is then given by

u = −P−1BTRx− P−1BTh. (4.108)

In order to use this solution we have to find expressions for R and h. By taking the
time derivatives of Equation (4.107) we find

ṗ = Ṙx+Rẋ+ ḣ. (4.109)

Let us now obtain the equations for ṗ and ẋ and using those in (4.109). From the
maximum principle we have that

ṗ = −∂H
∂x = −DTQDx−AT p+DTQr

= −DTQDx−ATRx−ATh+DTQr. (4.110)

Putting the optimal control into the state space model, Equation (4.97), we find

ẋ = Ax−BP−1BTRx−BP−1BTh+ Cr. (4.111)

Putting (4.110) and (4.111) into (4.109) gives

−DTQDx−ATRx−ATh+DTQr

= Ṙx+R(Ax−BP−1BTRx−BP−1BTh+ Cr) + ḣ. (4.112)

This can be rearranged as follows

(Ṙ+ATR+RA−RBP−1BTR+DTQD)x

+ḣ+ (A−BP−1BTR)Th−DTQr +RCr. (4.113)

This equation must hold for arbitrarily x ̸= 0, and also recognize the Riccati equa-
tion. We may therefore write

−Ṙ = ATR+RA−RBP−1BTR+DTQD, (4.114)

−ḣ = (A−BP−1BTR)Th−DTQr +RCr. (4.115)
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The final value boundary conditions for those differential equations are found as
follows. From the maximum principle, Equation (4.7) we obtain

p(t1) =
∂

∂x

[
1
2(r(t1)−Dx(t1))

TS(r(t1)−Dx(t1))
]
t1
. (4.116)

This can be written as follows

p(t1) =
∂

∂x

[
1
2(r(t1)

TSr(t1)− 2r(t1)
TSDTx(t1) + x(t1)

TDTSDx(t1))
]
t1
.(4.117)

Derivation of (4.117) of time gives

p(t1) = DTSDx(t1)−DTSr(t1). (4.118)

Letting t = t1 in (4.107) gives

p(t1) = R(t1)x(t1) + h(t1). (4.119)

This must hold for arbitrarily final states x(t1). Hence, by comparing Equations
(4.118) and (4.119) gives the boundary conditions

R(t1) = DTSD, (4.120)

h(t1) = −DTSr(t1). (4.121)

Note that we get the special case R(t1) = 0 and h(t1) = 0 if we do not weight the
deviation e at the end time, ie set S = 0 in the optimal criterion. However, in this
case there should be little reason to set S = 0. A better choice is to put S = Q.
The reason for this is in order not to obtain bad tracking of the reference at t = t1.

We see that equation (4.114) is the common Riccati equation. The only difference
from before is that we now have a weighting matrix DTQD for the process state
vector x. Both the Riccat equation and the equation (4.115) can be solved backwards
in time from end-time t1. Remember that we need the solutions at the present time
t, ie. R(t) and h(t).

The optimal solution consists, as we have shown, of a feedback from the process state
vector x as well as a feed-forward link from h. We see that the forward feedback
does not affect the feedback. The vector h is determined by the reference vector r
as well as by the feedback.

4.7.1 Conclusion

We summarize the results in the following theorem

Theorem 4.7.1 (Continuous time Linear Quadratic (LQ) optimal tracking)

Given a linear state space model ẋ = Ax + Bu and y = Dx as well a LQ opti-
mal criterion as given in equation (4.101).

The optimal control that minimizes the optimal criterion is given by

u = G1x− P−1BTh, (4.122)
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where

G1 = −P−1BTR(t), (4.123)

and

−Ṙ = ATR+RA−RBP−1BTR+DTQD, R(t1) = DTSD, (4.124)

−ḣ = (A+BG1)
Th−DTQr +RCr, h(t1) = −DTSr(t1). (4.125)

△

Theorem 4.7.2 (Continuous time LQ optimal tracking: minimum of the objective)

Given the solution to the optimal tracking problem in theorem 4.7.1. The mini-
mum value of the criterion over the time horizon [t, t1] is then given by

J(t) =
1

2
xTRx+ xTh+ w, (4.126)

where the time varying signal w is given by

−ẇ =
1

2
rTQr − 1

2
hTBP−1BTh, (4.127)

with boundary conditions for w at the final time t1 given by

w(t1) =
1

2
rT (t1)Sr(t1). (4.128)

△

Let’s study the steady state solution. This is what we get if the time horizon is
infinite, i.e. t1 → ∞. If we put ḣ = 0 in equation (4.115) we find

h = (A−BP−1BTR)−T (DTQ−RC)r. (4.129)

The optimal control is thus given by

u = G1x+G2r, (4.130)

where

G1 = −P−1BTR, (4.131)

G2 = −P−1BT (A−BP−1BTR)−T (DTQ−RC), (4.132)

where R is the solution of the algebraic Riccati equation. The optimal control in
this case is given by a constant feedback from x and a constant feed-forward control
from the reference r.

Example 4.1 (Optimalt følgesystem)
Given a process described with a SISO model with one state, with model

ẋ = −0.5x+ u, (4.133)

y = x, (4.134)
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with initial condition x(t0) = 0.

the output y should follow a given reference signal r(t). We chose the following
optimal objective

J =
1

2
s(r(t1)− y(t1)

2 +
1

2

∫ t1

t0

(q(r − y)2 + pu2)dt, (4.135)

where s, q and p are scalar weighting parameters.

The optimal control u which minimizes the objective J is given by

u = g1x+ g2h, (4.136)

where

g1 = −R

p
, g2 = −h

p
. (4.137)

R is the solution to the Riccati equation and the feed-forward control h is given by

−Ṙ = −R− R2

p
+ q, (4.138)

−ḣ = −(
1

2
+

R

p
)h− qr. (4.139)

the boundary conditions are given by Eqs. (4.120) and (4.121).

R(t1) = s, (4.140)

h(t1) = −sr(t1). (4.141)

The steady state solution of the Riccati equation as well as the stationary feedback
are given by

R = p

√
1 + 4 q

p − 1

2
, (4.142)

g1 =

√
1 + 4 q

p − 1

2
. (4.143)

Note that if we set the boundary condition R(t1) for the Riccati equation (4.138)
similar to the stationary solution, i.e. R(t1) = R which means that s = R, the
solution of the dynamic Riccati equation will be constant for all time t0 leqt leqt1.
In this case, this means that the deviation r−y at the end time is weighted by s = R.
This solution to the problem is especially simple because the optimum on the draw
consists of a constant feedback and a dynamic feed-forward. See Figures 4.1 and 4.2
for simulations.
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Figure 4.1: The figure shows simulations of y and u for example 4.1. We have used
the weights s = 2, q = 2 and p = 1. We see that the output y reacts before the
jump in the reference at t = 10. This is typical of optimal tracking systems (and for
predictive control) because one in advance, know the future change in the reference.
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Figure 4.2: The figure shows simulations of R and h for example 4.1. R is the
solution of the dynamic Riccati equation. h is the optimal feed-forward signal. We
have used the weights s = 2, q = 2 and p = 1.

4.8 LQ optimal tracking system with prediction and in-
tegral action

A standard Linear quadratic (LQ) optimal tracking system will generally have a
stationary deviation between the reference and the output vector (which must follow
the reference). In this section we will study a method to eliminate the stationary
deviated (including integral action).
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In this section, we will show how we can expand the results which was derived in
section 4.7 so that the LQ optimal tracking system has integral action.

We can call the results in section 4.7 a standard wording and solving the follow-up
problem. The technique we are going to use here is to include a model of the integral
effect in the process model and the criterion. We can then set this to standard form.
The solution is further given as in section 4.7.

4.8.1 Augmented process and controller model

Assume given a linear state space model for the system

ẋ = Ax+Bu, (4.144)

y = Dx. (4.145)

A method used to achieve integral action in optimal systems is to include the deriva-
tive of the controller error r − y in the model. we define

ż = r − y = r −Dx, (4.146)

where we have used Eq. (4.145). We have here introduced a state z which is given
by integration of (4.146). We combine (4.146) with the process model (4.144) and
(4.145) and obtain

[
ẋ
ż

]
=

Ã︷ ︸︸ ︷[
A 0
−D 0

] x̃︷︸︸︷[
x
z

]
+

B̃︷ ︸︸ ︷[
B
0

]
u+

C1︷︸︸︷[
0
I

]
r. (4.147)

In the same way, the output vector (4.145) can be written as

y =

D1︷ ︸︸ ︷[
D 0

] x̃︷︸︸︷[
x
z

]
. (4.148)

This gives the augmented (combined) state space model

˙̃x = Ãx̃+ B̃u+ C1r, (4.149)

y = D1x̃. (4.150)

where the model matrices and vectors are defined as in (4.147) and (4.148).

For later use, we define a slightly different formulation in the same way of the
extended state space model (4.148) and (4.150).

˙̃x = Ãx̃+ B̃u+ C̃r̃, (4.151)

ỹ = D̃x̃, (4.152)

where

ỹ =

[
y
z

]
, D̃ =

[
D 0
0 I

]
, C̃ =

[
0 0
I 0

]
, r̃ =

[
r
0

]
. (4.153)
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4.8.2 Formulating the objective

From the theory of LQ optimal systems (section 4.2), 4.7)) we know that the optimal
on the move among other things, consists of a feedback from the whole the state
vector of the process. The reason for this is that the conditions must be weighted
in the criterion such that all conditions are observable (possibly detectable) seen
from the criterion. To ensure that all conditions are observable from the criterion it
is natural to emphasize the regulator state vector z in addition to emphasizing the
deviation r − y. It would therefore be natural to choose a criterion of the form

J =
1

2
[(r − y)TS(r − y) + zTSzz]t1 +

1

2

∫ t1

t0

[(r − y)TQ(r − y) + zTQzz + uTPu]dt.

(4.154)

We will now show that this criterion can be set to standard form, i.e. in the same
form as the criterion used in connection with optimal tracking. See section 4.7.

Let’s start with based on the definitions given in (4.153) and looks at the discrepancy
between r̃ and ỹ. We have

r̃ − ỹ = r̃ − D̃x̃ =

r̃︷︸︸︷[
r
0

]
−

D̃︷ ︸︸ ︷[
D 0
0 I

] x̃︷︸︸︷[
x
z

]
=

[
r −Dx
−z

]
. (4.155)

We define the augmented weighting matrix

Q̃ =

[
Q 0
0 Qz

]
. (4.156)

We then have that

(r̃ − D̃x̃)T Q̃(r̃ − D̃x̃)

=
[
(r −Dx)T zT

] [Q 0
0 Qz

] [
r −Dx

z

]
= (r −Dx)TQ(r −Dx) + zTQzz. (4.157)

Let us further define the following weighting matrix for the error r̃− D̃x̃ at the final
time instant t1

S̃ =

[
S 0
0 Sz

]
. (4.158)

This means that the criterion (4.154) may be written equivalently as

J =
1

2
[(r̃ − D̃x̃)T S̃(r̃ − D̃x̃)]t1 +

1

2

∫ t1

t0

[(r̃ − D̃x̃)T Q̃(r̃ − D̃x̃) + uTPu]dt.(4.159)

We notice for lather use that this objective is of the same form as the objective
(4.100).
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4.8.3 Solution to the optimal tracking problem with integral action

We see that the criterion given by (4.159) is of the same form as the criterion (4.100).
Furthermore, the state space model given by (4.152) and (4.153) is of the same form
as the state space model (4.97) and (4.98). This means that we can use the same
solution as derived in section 4.8 and as presented in theorem 4.7.1.

The only practical difference in the solution in section 4.8 and theorem 4.7.1 is that
we have got two new folding matrices Qz and Sz that emphasize the integrator
state vector z. In addition, the dimension of the Riccati equation has increased and
thus the complexity of the problem. On the other hand, there are many zeros in
the expanded matrices we has defined. It may therefore be useful to rewrite the
solution.

We end the discussion by concluding that the general solution The problem with
integral effect is quite equivalent to the solution presented in theorem 4.7.1, but
replaced with extended model matrices and vectors as presented above. We therefore
do not repeat the solution. In the next section, however, we will study a suboptimal
solution.

4.8.4 Suboptimal solution

In this section, we are by problem definition interested in zero stationary deviation
between the reference r and the output vector y. In order to be able to analyze the
stationary deviation we mathematically let t → ∞. This means that it is reasonable
that we only study optimal tracking systems with integral effect for time horizons of
a certain size. If the time horizon is chosen small, it can in many cases be impossible
to achieve zero steady state error. You can also have problems with stability. We
disregard the case of constantly sliding horizons, i.e. receding horizon problems.

It is therefore reasonable to assume a large time horizon. By large we mean here
that the time horizon is greater than the dominant one the time constant of the
feedback system. We can therefore study the stationary Riccati equation. This
means that we also do not need the boundary conditions for the dynamic matrix
Riccati equation. We also have a great advantage because we are guaranteed that
the closed system is stable. This is of great practical interest.

From theorem 4.7.1 we have that the optimum p aa drag is given by

u = G1x̃− P−1B̃Th. (4.160)

This means that the pull is given by a feedback from the process state vector x and
a feedback from the integrator state z. We see this by spliting up (4.160. We have

u = Gxx+Gzz − P−1B̃Th. (4.161)

where Gx and Gz are submatrices from G1. We assume a large time horizon. The
feedback gain matrix G1 is therefore given by

G1 = −P−1B̃TR, (4.162)
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where R is given by steady state solution to the ARE (the Algebraic Riccati Equa-
tion) in Theorem 4.7.1. We have

ÃTR+RÃ−RB̃P−1B̃TR+ D̃T Q̃D̃ = 0. (4.163)

We notice that

D̃T Q̃D̃ =

[
DTQD 0

0 Qz

]
. (4.164)

G1 og R beregnes enkelt for eksempel med MATLAB funksjonene lqr eller lqr2.

Let’s study the boundary conditions for the dynamic equation for calculating the
forward switching signal h(t). We have assumed a large time horizon so that we can
use the stationary solution to the Riccati equation to determine a constant feedback
matrix G1. In section 4.4 we gave a justification that it has no meaning to weight
the end state if the horizon is infinite and that we thereby can set S = 0. Actually, S
is arbitrary in this case because S is not entering in the stationary Riccati equation.

Against this background, it will in our case be tempting to use S̃ = 0 so that the
boundary condition becomes h(t1) = 0. On the other hand, we want zero stationary
offsets. A boundary condition h(t1) = 0 will generally make it impossible to meet
the requirement for zero stationary deviation at the end time. The reason for this is
of course that the forwarding signal h go to zero when we reach the end time. This
means that you do not have stationary conditions near the end time.

Let’s look at the case that S̃ ̸= 0. From theorem 4.7.1 we have that

h(t1) = −D̃S̃r̃(t1) = −DT
1 Sr(t1) =

[
−DTSr(t1)

0

]
, (4.165)

where we have used the definitions for S̃ as defined in (4.158), D̃ and r̃ as defined
in (4.153) and D1 as defined in (4.148).

We see from this that if S ̸= 0 the forward switch will be actived also at the end
time. It can be shown that this does not necessarily give zero stationary deviation
at end-time.

To achieve zero stationary deviation also at the end time we can use the stationary
solution of the dynamic equation (4.125) as boundary condition. We then have the
following limit condition for h.

h(t1) = A−T
cl (D̃T Q̃−RC̃)r̃(t1), (4.166)

Acl = Ã+ B̃R, (4.167)

where R is the solution to the steady state Riccati equation (4.149). The boundary
conditions may be written more simplified as follows

h(t1) = A−T
cl (DT

1 Q−RC1)r(t1). (4.168)

We notice that the fold matrix Qz which limits (emphasizes) z is not included in
the calculation of h.

Such a suboptimal solution as discussed above will of course generally give one higher
value on the criterion J compared to the optimal solution. This is the price you have
to pay for using a constant feedback matrix G1 and in addition have zero steady
state deviation also at the end-time.
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Example 4.2 (Optimal tracking system with integral action)
In example 4.1 we got stationary deviation between the reference r and the output y.
In this example we will use the theory described in this section and the same process
as in example 4.1 and show that the stationary deviation becomes zero. Given a
process as described in example 4.1. The controller’s integrator state z is defined by

ż = r − x, (4.169)

Combining this with the model described in example 4.1 we obtain

[
ẋ
ż

]
=

Ã︷ ︸︸ ︷[
−0.5 0
−1 0

] x̃︷︸︸︷[
x
z

]
+

B̃︷︸︸︷[
1
0

]
u+

C1︷︸︸︷[
0
1

]
r, (4.170)

y =

D̃︷ ︸︸ ︷[
1 0

] [ x
z

]
. (4.171)

The output y should follow a given reference r(t). We therefore choose the following
optimal criterion

J =
1

2
[S(r(t1)− y(t1))

2 + Szz
2]t1 +

1

2

∫ t1

t0

[Q(r − y)2 +Qzz
2 + Pu2]dt, (4.172)

where we have selected S = 2, Sz = 1, Q = 2, Qz = 1 and P = 1 are scalar weights.
The station solution can be found, for example, by using the ”MATLAB Control
System Toolbox” function, [−G1, R] = lqr2(Ã, B̃, Q̃, P ). where

Q̃ =

[
2 0
0 1

]
. (4.173)

This gives

R =

[
1.562 −1.000
−1.000 2.062

]
, G1 =

[
−1.562 1.000

]
(4.174)

This gives the control

u = −1.5616x+ z

−P−1B̃T︷ ︸︸ ︷
−
[
1 0

] h︷ ︸︸ ︷[
h1
h2

]
= −1.5616x+ z − h1(t), (4.175)

where h is the solution of the dynamic equation (4.125) and z is given by (4.169).
We have used (4.168) as a boundary condition for equation (4.125). The simulation
results shown in figure 4.3 show that we have zero stationary offset/deviation. This
was not the case in example 4.1.
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Figure 4.3: The figure shows simulations of y, u and h for example 4.2. We have used
the weights S = 2, Q = 2, Qz = 1 and P = 1. The start and end times are t0 = 0
and t1 = 25, respectively. We have used (4.166) as the boundary condition for h(t1).
We see that the output y reacts before the jump in the reference at t = 10. This is
typical of optimal tracking systems (and for predictive control) because one know the
future change in the reference. We see that we have zero stationary offset/deviation
between r and y. This was not the case in example 4.1 and the figures 4.1 and 4.2.

4.9 Weighting control rate of change u̇

4.9.1 Standard LQ optimal control with weighting the control rate
of change u̇

Consider a LQ objective of the form

J =
1

2
x(t1)

TSx(t1) +
1

2

∫ t1

t0

(xTQx+ uTPu+ u̇TRu̇)dt, (4.176)

where we in addition to emphasizing the state vector, x, and on the control vector,
u, emphasizes the derivative of the control i.e., u̇. The advantage of this is that we
can add weight on the speed of the control action via the weight matrix R. We can
thus by increasing R achieve a smoother/softer and calmer control action u. This
is appropriate in systems where we do not want rapid changes in the control action.

This problem can be solved by transforming the problem into a standard LQ prob-
lem. Let’s introduce a new control ũ such that

u̇ = ũ. (4.177)

We consider this as a state equation with u as the state. We can then set up an
extended state space model[

ẋ
u̇

]
=

[
A B
0r×n 0r×r

] [
x
u

]
+

[
0n×r

Ir×r

]
ũ. (4.178)
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ie. such that we have an extended state space model of the form

˙̃x = Ãx̃+ B̃ũ, (4.179)

where

x̃ =

[
x
u

]
, Ã =

[
A B
0r×n 0r×r

]
, B̃ =

[
0n×r

Ir×r

]
. (4.180)

The LQ objective may then be written on standard form as

J =
1

2
x̃(t1)

T S̃x̃(t1) +
1

2

∫ t1

t0

(x̃T Q̃x̃+ ũTRũ)dt, (4.181)

where the weighting matrices are given by

Q̃ =

[
Q 0n×r

0r×n P

]
, S̃ =

[
S 0n×r

0r×n 0r×r

]
. (4.182)

The optimal control ũ is then given by

ũ = Gx̃ (4.183)

G = −R−1B̃TR, (4.184)

where R is the positive definite solution ti the Riccati equation

−Ṙ = ÃTR+ ÃR−RB̃RB̃TR+ Q̃, (4.185)

with boundary conditions at the final time instant t1, i.e.

R(t1) = S̃. (4.186)

Remark that we know have obtained an equation

u̇ = G1x+G2u (4.187)

which has to be solved with respect to the control action u so we can put this control
to the process. This can usually be easiest done by discretization. We should note
that there is one discrete variant of this problem that we will discuss in the section
on optimal regulation of discrete time systems.
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4.10 Specified final state and open loop control

The control objective to be studied in this section is to drive the state x(t) in a
linear system ẋ = Ax + Bu from an initial state x(t0) to a final state x(t1) using
minimum control energy. The initial state x(t0) is known and the final state x(t1)
is specified.

This optimal control problem can be solved by minimizing a quadratic performance
index. Since x(t1) is specified it is redundant to include a final state weighting in the
cost index (performance index). Hence, it make sense to let the final state weighting
matrix S = 0. In order to simplify the solution, let Q = 0 also.1 The resulting
quadratic performance index is given by

J =
1

2

∫ t1

t0

uTPudt. (4.188)

Note that u = 0 ∀ t ∈ [t0, t1 > gives a minimum J = 0 when P > 0. However, this
control does in general not drive the state to the specified final state x(t1). Hence,
u = 0 is not a solution to our problem.

We will solve this optimal control problem by using the maximum principle. The
Hamilton function is given by

H =
1

2
uTPu+ pT (Ax+Bu). (4.189)

The optimal control is determined from the condition ∂H
∂u = 0, i.e.,

u = −P−1BT p, (4.190)

where we have assumed that P > 0. Substituting the optimal control into the state
and costate equations gives

ẋ = Ax−BP−1BT p, (4.191)

ṗ = −AT p. (4.192)

As we can see, the choice Q = 0 has decoupled the costate equation from the state
equation. Hence, the solution of the costate equation is simply

p(t) = e−AT (t−t1)p(t1) = eA
T (t1−t)p(t1), (4.193)

where, at this stage, p(t1) is unknown. Substituting this into the state Equation
(4.191) gives

ẋ = Ax−BP−1BT eA
T (t1−t)p(t1). (4.194)

The solution of the state equation with the optimal control is given by

x(t) = eA(t−t0)x(t0)− (

∫ t

t0

eA(t−τ)BP−1BT eA
T (t1−τ)dτ)p(t1), (4.195)

1In fact, as we will show, this problem has an analytical solution.
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We can now find p(t1) from the equation obtained by evaluating (4.195) for t = t1.
Putting t = t1 in (4.195) gives

x(t1) = eA(t1−t0)x(t0)−Wc(t0, t1)p(t1), (4.196)

where

Wc(t0, t1) =

∫ t1

t0

eA(t1−τ)BP−1BT eA
T (t1−τ)dτ, (4.197)

is defined as the weighted controllability gramian. The gramian is weighted because
it depends upon the control weighting matrix P . Note that the weighted control-
lability gramian reduces to the standard controllability gramian when P = I and
t0 = 0.

We have from (4.196) that the final costate is given by

p(t1) = −Wc(t0, t1)
−1(x(t1)− eA(t1−t0)x(t0)), (4.198)

providedWc(t0, t1) is non-singular. The costate p(t) is then given by (putting (4.198)
into (4.193) gives)

p(t) = −eA
T (t1−t)Wc(t0, t1)

−1(x(t1)− eA(t1−t0)x(t0)). (4.199)

Substituting this into the expression for the optimal control, i.e. u = −P−1BT p,
gives the optimal control

u(t) = P−1BT eA
T (t1−t)Wc(t0, t1)

−1(x(t1)− eA(t1−t0)x(t0)). (4.200)

if Wc(t0, t1) is non-singular. Note that the optimal control (4.200) for single input
systems is independent of the control weighting p. Since u(t) is defined in terms of
the inverse of the gramian Wc(t0, t1) the optimal control exists for arbitrary x(t0)
and x(t1) if and only if det(Wc(t0, t1)) ̸= 0. This corresponds to controllability of
the plant. This means that if the system (A,B) is controllable then there exists a
minimum-energy control to drive any x(t0) to any desired x(t1).

The control (4.200) is an open-loop control since u(t) does not depend on the current
state x(t). It depends only on the initial and the final states (and time), and it can
be precomputed and then applied for all t in [t0, t1].

4.10.1 On the controllability gramian

Definition 4.1 (Weighted controllability gramian) The weighted controllabil-
ity gramian for the system (A,B) is defined as

Wc(t0, t) =

∫ t

t0

eA(t−τ)BP−1BT eA
T (t−τ)dτ (4.201)

=

∫ t−t0

0
eAτBP−1BT eA

T τdτ, (4.202)

where P is a non-singular weighting matrix.
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Note that the gramian Wc(t0, t) only is dependent on the difference t − t0. This
means that Wc(0, t− t0) = Wc(t0, t). This is the reason for the short-hand notation
Wc(t0, t) = Wc(t− t0) which sometimes is used.

It is useful to recognize the relationship between the gramian Wc(t0, t) and the
solution of a matrix Lyapunov equation. We have the following proposition.

Proposition 4.1 The weighted controllability gramian Wc(t0, t) can be computed
from the solution of the Lyapunov matrix differential equation

Ẇ = AW +WAT +BP−1BT (4.203)

which has the solution

W (t) = eA(t−t0)W (t0)e
AT (t−t0) +

∫ t

t0

eA(t−τ)BP−1BT eA
T (t−τ)dτ

= eA(t−t0)W (t0)e
AT (t−t0) +

∫ t−t0

0
eAτBP−1BT eA

T τdτ. (4.204)

If the initial condition is zero, i.e., W (t0) = 0, then Wc(t0, t) = W (t).

Proof

The time derivative of (4.204) is

Ẇ (t) = AeA(t−t0)W (t0)e
AT (t−t0) + eA(t−t0)W (t0)e

AT (t−t0)AT

+ eA(t−t0)BP−1BT eA
T (t−t0). (4.205)

Substituting (4.205) and (4.204) into (4.203) gives

eA(t−t0)BP−1BT eA
T (t−t0) =∫ t

t0
AeA(t−τ)BP−1BT eA

T (t−τ)dτ +
∫ t
t0
eA(t−τ)BP−1BT eA

T (t−τ)ATdτ +BP−1BT

and

eA(t−t0)BP−1BT eA
T (t−t0) = −

∫ t

t0

d

dτ

[
eA(t−τ)BP−1BT eA

T (t−τ)
]
dτ +BP−1BT

and

eA(t−t0)BP−1BT eA
T (t−t0) = −

[
eA(t−τ)BP−1BT eA

T (t−τ)
]t
t0
+BP−1BT

which is true. Hence, (4.204) is a solution of (4.188). QED.

Remark 4.1 Consider the solution (4.204) and (4.203) with initial condition W (t0) =
0. Substituting (4.205) into (4.203) gives the matrix Lyapunov equation

AWc(t0, t) +Wc(t0, t)A
T = eA(t−t0)BP−1BT eA

T (t−t0) −BP−1BT (4.206)

This is a linear equation which can be used to compute the gramian Wc(t0, t). This
equation is frequently used when A is stable and t → ∞. See e.g. the Control System
Toolbox for MATLAB function Wc = gram(A,B). Equation (4.206) can be used for
unstable A and finite t.
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Remark 4.2 It is important to note that (4.206) only can be used when the solution
is unique or when (4.206) has a solution. Equation (4.206) can not be used on

systems with A = 0, A =

[
0 1
0 0

]
and A =

[
λ 1
0 −λ

]
The reason for this is that the

Lyapunov equation does not have a unique solution in these cases.

Remark 4.3 Note that the controllability gramian Wc ((4.202) with P = I) is
related to the controllability matrix Cn for the pair (A,B) as

Wc(t0, t) = CnF (t)CT
n (4.207)

where F (t) is a matrix. The matrix F (t) can be deduced by using the series equivalent
to eAτ and the Cayley-Hamilton theorem. Se example 4.7 for an illustration.

4.10.2 Illustrating examples

Example 4.3 Consider the system matrix

A =

[
0 1
0 0

]
. (4.208)

Problem Show that the transition matrix is given by

eAt =

[
1 t
0 1

]
. (4.209)

Solution The system matrix A is nilpotent2 because A2 = 0. This implies that the
series expansion for eAt is finite, i.e.

eAt = I +At. (4.210)

Example 4.4 Consider the system ẋ = Ax+Bu with system matrices

A =

[
0 1
0 0

]
, B =

[
0
1

]
. (4.211)

Problem Show that the weighted controllability gramian is given by

Wc(t0, t) =
1

p

[
(t−t0)3

3
(t−t0)2

2
(t−t0)2

2 t− t0

]
. (4.212)

Solution Integrating

Wc(t0, t) =

∫ t

t0

eA(t−τ)BP−1BT eA
T (t−τ)dτ. (4.213)

with P = p as a scalar weight gives

Wc(t0, t) =
1

p

∫ t

t0

[
1 t− τ
0 1

] [
0 0
0 1

] [
1 0

t− τ 1

]
dτ

=
1

p

∫ t

t0

[
(t− τ)2 t− τ

t− τ 1

]
dτ. (4.214)

2A nilpotent matrix is a matrix A where Ak = 0 for some k.
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This gives

Wc(t0, t) =
1

p

∣∣∣∣−1
3(t− τ)3 −1

2(t− τ)2

−1
2(t− τ)2 τ

∣∣∣∣t
t0

=
1

p

[
0 0
0 t

]
− 1

p

[
−1

3(t− t0)
3 −1

2(t− t0)
2

−1
2(t− t0)

2 t0

]
=

1

p

[
1
3(t− t0)

3 1
2(t− t0)

2

1
2(t− t0)

2 t− t0

]
. (4.215)

As we see, the gramian Wc(t0, t) is only dependent on the difference t − t0. This
means that Wc(0, t− t0) = Wc(t0, t).

Example 4.5 The objective in this example is to compute the weighted controlla-
bility gramian Wc(t0, t) as in Example 4.4 but now by using the differential matrix
Lyapunov equation approach as illustrated in (4.203) and (4.204). Let

Wc(t0, t) =

[
w11 w21

w21 w22

]
, (4.216)

then (4.188) gives

Ẇ =

[
0 1
0 0

]
W +W

[
0 0
1 0

]
+

BP−1BT︷ ︸︸ ︷[
0 0
0 1

p

]
, (4.217)

which gives the scalar differential equations

ẇ11 = 2w21, (4.218)

ẇ21 = w22, (4.219)

ẇ22 =
1

p
. (4.220)

We can now integrating these equations by using zero initial conditions, i.e. W (t =
0) = 0, and from time t0 to t. We have

w22 =
1

p

∫ t

t0

dτ =
t− t0
p

. (4.221)

Putting (4.221) into (4.219) gives

w21 =
1

p

∫ t

t0

(τ − t0)dτ =
1

2p

[
(τ − t0)

2
]t
t0
=

(t− t0)
2

2p
(4.222)

and so on. Hence

Wc(t, t0) =

[
w11 w21

w21 w22

]
=

[
(t−t0)3

3p
(t−t0)2

2p
(t−t0)2

2p
t−t0
p

]
. (4.223)
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Example 4.6 An object obeying Newton’s law satisfies

ẋ =

A︷ ︸︸ ︷[
0 1
0 0

]
x+

B︷︸︸︷[
0
1

]
u (4.224)

where x =
[
x1 x2

]T
with x1 the position, x2 the velocity and u an acceleration

input.

The control objective is to drive the state from an initial state x(t0) to any final state
x(t1), while minimizing the performance index

J =
1

2

∫ t1

t0

pu2dt. (4.225)

The controllability gramian can be solved by using the definition or from (4.203) and
(4.204) with zero initial conditions W (t0) = 0. Se Examples 4.4 and 4.5. From this
we have

Wc(t, t0) =

[
w11 w21

w21 w22

]
=

[
(t−t0)3

3p
(t−t0)2

2p
(t−t0)2

2p
t−t0
p

]
. (4.226)

In order to compute the optimal control we need the inverse of Wc(t0, t1). We have

W−1
c (t0, t1) =

12p

(t1 − t0)3

[
1 − t1−t0

2

− t1−t0
2

(t1−t0)2

3

]
. (4.227)

The optimal control is found by using (4.200). First, compute

BT eA
T (t1−t)W−1

c (t0, t1) =
12p

(t1−t0)3

[
0 1

] [ 1 0
t1 − t 1

][
1 − t1−t0

2

− t1−t0
2

(t1−t0)2

3

]

= 12p
(t1−t0)3

[
t1 − t 1

] [ 1 − t1−t0
2

− t1−t0
2

(t1−t0)2

3

]
= 12p

(t1−t0)3

[
t1 − t− 1

2p(t1 − t0) − 1
2p(t1 − t)(t1 − t0) +

1
3p(t1 − t0)

2
]

= p
[

12(t1−t)
(t1−t0)3

− 6
(t1−t0)2

− 6(t1−t)
(t1−t0)2

+ 4
t1−t0

]
. (4.228)

Substituting into (4.200) gives the optimal control

u(t) =
[

12(t1−t)
(t1−t0)3

− 6
(t1−t0)2

− 6(t1−t)
(t1−t0)2

+ 4
t1−t0

]
(x(t1)−

[
1 t1 − t0
0 1

]
x(t0)).(4.229)

Note that this expression with t0 = 0 reduces to

u(t) =
[

6t1−12t
t31

−2t1+6t
t21

]
(x(t1)−

[
1 t1
0 1

]
x(t0)). (4.230)

Note that the optimal control is independent of the control weighting p.
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Example 4.7 Consider a system (A,B) where A ∈ Rn×n and B ∈ Rn×r, and where
A is nilpotent so that A2 = 0. The transition matrix is in this case given by

eAt = I +At. (4.231)

See e.g. example 4.6 for a system matrix which has this property. The controllability
gramian is given by

Wc(t0, t) =

∫ t−t0

0
eAτBP−1BT eA

T τdτ

=

∫ t−t0

0
(I +Aτ)BP−1((I +Aτ)B)Tdτ. (4.232)

Putting P = I gives

Wc(t0, t) =
[
B AB

] ∫ t−t0

0

[
Ir

τIr

] [
Ir τIr

]
dτ

[
B AB

]T
, (4.233)

where Ir is the r × r identity matrix. This gives

Wc(t0, t) = C2F (t− t0)C
T
2 (4.234)

where

C2 =
[
B AB

]
, (4.235)

and

F (t− t0) =

[
Ir

1
2(t− t0)

2Ir
1
2(t− t0)

2Ir
1
3(t− t0)

3Ir

]
. (4.236)

Note that this F (t − t0) matrix with t − t0 = 1 is known as a Hilbert matrix which
is a famous example of an ill-conditioned matrix.

Example 4.8 Consider a system matrices A ∈ Rn×n and B ∈ Rn×r. Assume that
A is nilpotent so that A3 = 0. In this case

eAt = I +At+
1

2
A3. (4.237)

The controllability gramian Wc(0, t) can in this case be expressed in terms of the
controllability matrix as

Wc(0, t) = C3F (t)CT
3 (4.238)

where

C3 =
[
B AB A2B

]
, (4.239)

is the controllability matrix and

F (t) =

 Ir
1
2 t

2Ir
1
6 t

3Ir
1
2 t

2Ir
1
3 t

3Ir
1
8 t

4Ir
1
6 t

3Ir
1
8 t

3Ir
1
20 t

5Ir

 , (4.240)

where Ir is the r × r identity matrix. It can be shown that F (t) is symmetric and
positive definit for all t > 0.
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4.11 Exercises

Exercise 4.1 Consider the system

A =


0 0 1 1
0 0 0 1
0 0 0 0
0 0 0 0

 , (4.241)

and

B =


0 0
0 0
1 0
0 1

 . (4.242)

a) Show that A2 = 0.

b) Find the controllability gramian Wc(0, 1).
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4.12 Analytical solution to the scalar LQ problem

We will in this section study the LQ problem of a scalar system analytically. Consider
the system

ẋ = ax+ bu, x(t0) given. (4.243)

and the performance index

J =
1

2
sx(t1)

2 +
1

2

∫ t1

t0

(qx2 + pu2)dt. (4.244)

The solution to this problem is given by

u = − b

p
r(t)x (4.245)

where r(t) is the positive solution to the scalar Riccati differential equation

−ṙ = 2ar − b2

p
r2 + q, r(t1) = s. (4.246)

This differential equation can be solved analytically, e.g. by the method which is
known as separation of variables.

The solution can also be derived from an eigenvalue-eigenvector decomposition of
the Hamiltonian matrix. The Hamiltonian matrix F corresponding to the state and
costate system [

ẋ
ṗ

]
= F

[
x(t)
p(t)

]
(4.247)

is given by

F =

[
a − b2

p

−q −a

]
. (4.248)

The solution is given as [
x(t1)
p(t1)

]
= Φ

[
x(t)
p(t)

]
(4.249)

where Φ = eF (t1−t) is the transition matrix. The transition matrix can be computed
from an eigenvalue and eigenvector decomposition of F .

The two eigenvalues of matrix F , λ1 and λ2 are given by λ1 = −λ and λ2 = λ where

λ =

√
a2 +

q

p
b2. (4.250)

Define the eigenvalue matrix as

Λ =

[
−λ 0
0 λ

]
. (4.251)



74 Optimal Control of Continuous Time Systems

The corresponding eigenvector matrix is given by

M =

[
1 1

− q
a−λ − q

a+λ

]
, (4.252)

and the inverse is

M−1 =
a2 − λ2

2qλ

[
− q

a+λ −1
q

a−λ 1

]
= M−1 =

b2

2pλ

[
− q

a+λ −1
q

a−λ 1

]
. (4.253)

The transition matrix corresponding to the solution of the state and costate equa-
tions is now given by

Φ(t1 − t) = eF (t1−t) = M−1eΛ(t1−t)M, (4.254)

which gives

Φ =
a2 − λ2

2qλ

[
− q

a+λe
−λ(t1−t) + q

a−λe
λ(t1−t) −e−λ(t1−t) + eλ(t1−t)

q2

a2−λ2 e
−λ(t1−t) − q2

a2−λ2 e
λ(t1−t) q

a−λe
−λ(t1−t) − q

a+λe
λ(t1−t)

]
(4.255)

and

Φ =
1

2λ

[
−(a− λ)e−λ(t1−t) + (a+ λ)eλ(t1−t) −a2−λ2

q e−λ(t1−t) + a2−λ2

q eλ(t1−t)

q(e−λ(t1−t) − eλ(t1−t)) (a+ λ)e−λ(t1−t) − (a− λ)eλ(t1−t)

]
.(4.256)

The elements in Φ can be written in terms of the hyperbolic sine and cosine as
follows

ϕ11 =
1

2λ
(a(eλ(t1−t) − e−λ(t1−t)) + λ(eλ(t1−t) + e−λ(t1−t)))

=
1

λ
(a sinh(λ(t1 − t) + λ cosh(λ(t1 − t)), (4.257)

ϕ21 = − 1

λ
q sinh(λ(t1 − t)), (4.258)

ϕ12 = −λ2 − a2

λq
sinh(λ(t1 − t)), (4.259)

ϕ22 =
1

2λ
(−a(eλ(t1−t) − e−λ(t1−t)) + λ(eλ(t1−t) + e−λ(t1−t)))

=
1

λ
(−a sinh(λ(t1 − t) + λ cosh(λ(t1 − t)). (4.260)

The solution to the scalar Riccati equation is then

r(t) =
sϕ11 − ϕ21

ϕ22 − sϕ12
. (4.261)
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This gives

r(t) =
q tanh(λ(t1 − t)) + s(a tanh(λ(t1 − t)) + λ)

λ− a tanh(λ(t1 − t)) + sλ
2−a2

q tanh(λ(t1 − t))
. (4.262)

Assume s = 0. Then

r(t) =
q sinh(λ(t1 − t))

λ cosh(λ(t1 − t))− a sinh(λ(t1 − t))
=

q tanh(λ(t1 − t)

λ− a tanh(λ(t1 − t))
. (4.263)

Note that the hyperbolic cosine and sine of a number z are defined as sinh(z) =
1
2(e

z−e−z) and cosh(z) = 1
2(e

z+e−z). The hyperbolic tangent is defined as tanh(z) =
sinh(z)
cosh(z) and the hyperbolic cotangent is defined as coth(z) = 1

tanh(z) .

Assume t1 → ∞. This gives the scalar algebraic Riccati equation and the positive
solution is found from the above as

r∞ = lim
t1→∞

r(t) =
q + s(λ+ a)

λ− a+ s(λ2−a2)
q

=
q

λ− a

1 + s(λ+a)
q

1 + s(λ+a)
q

=
q

λ− a
, (4.264)

which is independent of the final state weighting s. We have here used that

tanh(z) =
ez − e−z

ez + e−z
=

1− e−2z

1 + e−2z
(4.265)

and, with z = λ(t1 − t) that

lim
t1→∞

tanh(λ(t1 − t)) = lim
t1→∞

1− e−2λ(t1−t)

1 + e−2λ(t1−t)
= 1. (4.266)

Note that an alternative expression for r∞ is found by solving for the positive solution
to the ARE, i.e. solving for r > 0 where − b2

p r
2 + 2ar + q = 0, which gives r∞ =

p
b2
(a+ λ).

Let us study the relationship between the weights and the closed loop system in
this case. We now that −λ is the eigenvalue of the closed loop system Hence, from
−λ = a− bg where g = b

pr∞ we obtain

q

p
=

λ2 − a2

b2
. (4.267)

This means that it is possible to specify the closed loop eigenvalue −λ and compute
the corresponding ratio between the weights. This result is generalized to general
linear systems in Solheim (1972) (eigenvector-eigenvalue method) Di Ruscio (1990)
(Schur method).

4.12.1 The case with q = 0 in the objective function

Consider the case with no intermediate state weighting, i.e., q = 0 in the objective
function. The solution to the Riccati equation is in this case given by

r(t) =
s(a tanh(a(t1 − t)) + a)

a− a tanh(a(t1 − t)) + s b
2

p tanh(a(t1 − t))

=
s

sb2

2ap + (1− sb2

2ap)e
−2a(t1−t)

(4.268)



76 Optimal Control of Continuous Time Systems

Consider now an infinite horizon LQ problem with zero state weighting.

Unstable system a > 0

The steady state value of r(t) as t1 − t → ∞ is in this case given by

r∞ =
2ap

b2
. (4.269)

The closed loop system is in this case ẋ = aclx where

acl = a− b2

p
r∞ = −a. (4.270)

This means e.g. that the LQ optimal feedback with zero state weighting, i.e. g =
− b

pr∞ = −2a, will stabilize an unstable system.

The algebraic Riccati equation is in the case with Q = 0 reduced to a Lyapunov
equation in R−1, i.e. R−1AT +AR−1 −BP−1BT = 0. In the scalar case with q = 0
we get r−1 = b2

2ap and r = 2ap
b2

.

The result above can be generalized to multivariable linear systems and is known in
the literature as the mirror image property of the LQ regulator. It states that the
eigenvalues of a closed loop LQ system, obtained with zero state weighting Q = 0,
is identical to −λ(A) where λ(A) is the open loop eigenvalues.

Stable open loop system a < 0

The steady state value of r(t) as t1 − t → ∞ is in this case

r∞ = 0 (4.271)

and the closed loop system is ẋ = ax and u = 0 is the optimal control.

Integrator a = 0

The case where both q = 0 and a = 0 needs to be handled separately. In this case
we have that the transition matrix of the state and costate system is

Φ(t1 − t) = eF (t1−t) = I + F (t1 − t) =

[
1 − b2

p (t1 − t)

0 1

]
. (4.272)

The solution to the Riccati equation is then

r(t) =
sϕ11

ϕ22 − sϕ12
=

s

1 + sb2

p (t1 − t)
. (4.273)

Consider t1 → ∞. Then we have that r∞ = 0 and that u = 0 is the optimal control.
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Example 4.9 (Temperature control in a room)
Define θ(t) as the temperature in the room, θa as the ambient temperature (Norwe-
gian: omgivelses temperatur) which is assumed to be constant, and u(t) as the rate
of heat supply to the room. The dynamics of the room temperature is then given by

θ̇ = −λ(θ − θa) + bu, (4.274)

where λ and b are constants.

Define the state as

x(t) = θ − θd, (4.275)

where θd is the desired room temperature. Then we have the state equation

ẋ = ax+ bu+ v, (4.276)

where a = −λ and v = a(θa − θd).

Consider the following objective function

J =
1

2
s(θ(t1)− θd)

2 +
1

2

∫ t1

t0

(q(θ − θd)
2 + pu2)dt

=
1

2
sx(t1)

2 +
1

2

∫ t1

t0

(qx2 + pu2)dt. (4.277)

A special case of interest is to put q = 0. This means that we want the temperature
to be close to the desired temperature at the final time t1 while using the least possible
supplied energy.

In order to solve this problem properly we need a method to incorporate external
signals in the model, i.e., the disturbance in the state equation. This will be discussed
later.

However, the above problem can be re-formulated by defining the state as

x(t) = θ − θa. (4.278)

This gives the model

ẋ = ax+ bu, (4.279)

and the objective (with q = 0)

J =
1

2
s(x(t1)− xr)

2 +
1

2

∫ t1

t0

pu2dt. (4.280)

where

xr = θd − θa (4.281)

can be viewed as a reference signal for the final state. xr is assumed to be known for
all times t0 ≤ t ≤ t1.
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Let us study this problem in detail. The solution of the state and costate system is[
x(t1)
p(t1)

]
=

[
ϕ11 ϕ12

0 ϕ22

] [
x(t)
p(t)

]
(4.282)

where

ϕ11 = ea(t1−t), (4.283)

ϕ22 = e−a(t1−t), (4.284)

ϕ12 = − b2

ap
sinh(a(t1 − t)). (4.285)

Note that the transition matrix Φ of an upper triangular matrix F has the same
structure as F and that F and Φ commutes, i.e. FΦ = ΦF . Note also that the diag-
onal elements in Φ is equal to the exponent of the corresponding diagonal elements
in F .

The optimal control is given by

u(t) = − b

p
p(t). (4.286)

We will no go for a relationship between p(t) and x(t).

The boundary condition p(t1) is found from the maximum principle, i.e.,

p(t1) =
∂

∂t1

1

2
s(x(t1)− xr)

2 = s(x(t1)− xr). (4.287)

Hence, we have three equations

x(t1) = ϕ11x+ ϕ12p, (4.288)

p(t1) = ϕ22p, (4.289)

p(t1) = s(x(t1)− xr), (4.290)

which gives

p = r(t)x+ h(t), (4.291)

where

r(t) =
sϕ11

ϕ22 − sϕ12
, (4.292)

and

h(t) = − s

ϕ22 − sϕ12
xr. (4.293)

The optimal control is then given by

u(t) = g1(t)x(t) + g2(t)xr, (4.294)

where

g1(t) = − b

p
r(t), (4.295)

g2(t) =
b

p

s

ϕ22 − sϕ12
. (4.296)

Hence, the optimal control consist of a feedback from the state and a feedforward
from the reference.
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An expression for the final state x(t1) can be found as follows. Using (4.288), (4.289)
and (4.290) with t = t0 gives the final state x(t1) as a function of known variables,
i.e.,

x(t1) =
ϕ11(t0, t1)

1 + sWc(t0, t1)
x0 +

sWc(t0, t1)

1 + sWc(t0, t1)
xr (4.297)

where

Wc(t0, t1) = −ϕ12

ϕ22
=

b2

ap
ea(t1−t0) sinh(a(t1 − t0)) (4.298)

is the weighted controllability gramian for the pair (a, b) and weight p. Note that
x(t1) = xr as s → ∞.

The results of the LQ optimal control strategy are illustrated in Figures 4.4 and 4.5.
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Figure 4.4: Optimal control of room temperature. s = 0.4, p = 1, xr = 10, a = −1/5,
b = 1, t0 = 0, t1 = 60, x(t0) = 0. An LQ optimal control u(t) is used for t0 ≤ t ≤ t1.

Suppose that the heat supply u(t) is held constant equal to u(t1) for all times t > t1
and that we want to find the weight s such that

lim
t→∞

x(t) = xr. (4.299)

The steady state control is in this case us = −a
bxr Hence, an equation for the weight

is determined from u(t1) = us. We have

u(t1) = − b

p
p(t1) (4.300)

where

p(t1) = s(x(t1)− xr) =
sϕ11(t0, t1)

1 + sWc(t0, t1)
x0 −

s

1 + sWc(t0, t1)
xr (4.301)
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Figure 4.5: Optimal control of room temperature. s = 0.4, p = 1, xr = 10, a = −1/5,
b = 1, t0 = 0, t1 = 60. An LQ optimal control u(t) is used for t0 ≤ t ≤ t1.
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Figure 4.6: Optimal control of room temperature. s = 0.4, p = 1, xr = 10, a = −1/5,
b = 1, t0 = 0, t1 = 60, x(t0) = 0. An LQ optimal control u(t) is used for t0 ≤ t ≤ t1.
The control is held constant u(t) = u(t1) for t > t1.

Putting (4.301) into (4.300) and solving for s gives

s =
u(t1)

b
pxr −

b
pϕ11(t0, t1)x0 −Wc(t0, t1)u(t1)

. (4.302)

This control strategy is simulated and illustrated in Figure 4.6.

Example 4.10 (Temperature control in a room)
Consider the same problem as in Example 4.9 but with parameters t0 = t and t1 =



4.12 Analytical solution to the scalar LQ problem 81

t+T where T is a constant time horizon. Hence, we have a receding horizon objective

J =
1

2
s(x(t+ T )− xr)

2 +
1

2

∫ t+T

t
pu2dt. (4.303)

The solution to this control problem is found by putting t1 = t + T into the control
determined in Example 4.9. We have

u(t) = g1(T )x(t) + g2(T )xr (4.304)

where g1(T ) and g2(T ) now is constant parameters defined as follows

g1(T ) = − b

p
r(T ) = − b

p

sϕ11(T )

ϕ22(T )− sϕ12(T )
, (4.305)

g2(T ) =
b

p

s

ϕ22(T )− sϕ12(T )
. (4.306)

where

ϕ11(T ) = eaT , (4.307)

ϕ22(T ) = e−aT , (4.308)

ϕ12(T ) = − b2

ap
sinh(aT ). (4.309)

The closed loop system with this control is given by

ẋ = (a+ bg1(T ))x+ bg2(T )xr. (4.310)

Define the closed loop pole as

acl = a+ bg1(T ) (4.311)

and the steady state as

xs = lim
t→∞

x(t) =
−bg2(T )

a+ bg1(T )
xr. (4.312)

The steady state xs and the closed loop pole acl = a + bg1(T ) are illustrated as a
function of the weight s and the horizon T in Figures 4.7 and 4.8.

The figures shows that a small horizon T and a large weight s will result in a steady
state xs which is close to the reference xr. Note however, that the closed loop system
is very fast with T small and s large. Note also that there are no finite parameters
s > 0 and T > 0 which will result in a steady state xs which is identically equal to
xr.

The heat supply u(t) and the state x(t), (which is defined as the difference between
the room temperature and the ambient temperature), are illustrated in Figure 4.9.
Note that the heat supply at time t = 0 is different from zero in this case. The
control at time zero is u(0) = g2(T )x(0)+g2(T )xr = g2(T )xr in this case. Note that
the control was u(t = 0) = 0 for the LQ optimal control strategy in Example 4.9,
Figures 4.4 and 4.6.
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Figure 4.7: Steady state temperature with predictive control, as a function of the
weight s and the horizon T . a = −1/5, b = 1, p = 1, xr = 10.
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Figure 4.8: The closed loop pole acl = a+ bg1(T ) as a function of the weight s and
the horizon T . a = −1/5, b = 1, p = 1, xr = 10.

4.13 Analytical solution to the tracking problem

Consider a linear model ẋ = Ax + Bu + Cr, y = Dx, initial values x(t0) specified
and the performance index

J =
1

2
(r(t1)− y(t1))

TS(r(t1)− y(t1)) +
1

2

∫ t1

t0

(r − y)TQ(r − y) + uTPu)dt.(4.313)

We will in the following discuss the solution to the optimal tracking problem. An
analytical derivation will be given as far as possible.
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Figure 4.9: The state and heat supply with predictive control. a = −1/5, b = 1,
p = 1, s = 0.4, xr = 10, T = 0.1, x(t = 0) = 0.

The Hamiltonian function is

H =
1

2
[(r −Dx)TQ(r −Dx) + uTPu)] + pT (Ax+Bu+ Cr) (4.314)

The optimal control is determined from the 1st order condition for a minimum,
i.e. ∂H

∂u = 0, which gives u = −P−1BT p(t). We will in the following prove the
relationship p = Rx+ h.

Derivation of the relationship p = Rx+ h

The co-state is given by ṗ = −∂H
∂x . Having that

∂H

∂x
= −DTQ(r −Dx) +AT p (4.315)

gives

ṗ = −(−DTQ(r −Dx) +AT p) = −DTQDx−AT p+DTQr. (4.316)

Note that the derivative of a vector valued scalar function f(u(x)) with respect
to a vector x is given by ∂f

∂x = (∂u∂x)
T ∂f
∂u . This can be used to find the derivative

of the first term in the Hamilton function. Consider the quadratic function f =
1
2(r−Dx)TQ(r−Dx). Defining u = r−Dx gives f = 1

2u
TQu, ∂u

∂x = −D, ∂f
∂u = Qu

and ∂f
∂x = −DTQu.

The state equation substituted for the optimal control is

ẋ = Ax−BP−1BT p+ Cr. (4.317)

This gives the system of differential equations

[
ẋ
ṗ

]
=

F︷ ︸︸ ︷[
A −BP−1BT

−DTQD −AT

] [
x
p

]
+

[
C

DTQ

]
r (4.318)
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The solution is [
x(t1)
p(t1)

]
=

[
Φ11 Φ12

Φ21 Φ22

] [
x
p

]
+

[
h1
h2

]
(4.319)

where we have defined

Φ(t1 − t) =

[
Φ11 Φ12

Φ21 Φ22

]
= eF (t1−t) (4.320)

and [
h1
h2

]
=

∫ t1

t
eF (t1−τ)

[
C

DTQ

]
r(τ)dτ (4.321)

The transition matrix (4.320) and the integral (4.321) can for some simple systems
be solved analytically. The transition matrix can also be defined via the eigenvalue
decomposition or the Schur form of matrix F .

The boundary condition for (4.316) is given by

p(t1) =
∂H

∂x(t1)
[
1

2
(r(t1)−Dx(t1))

TS(r(t1)−Dx(t1))] = −DTS(r(t1)−Dx(t1))

Write this for convenience with the literature as

p(t1) = R(t1)x(t1) + h(t1), (4.322)

where

R(t1) = DTSD, h(t1) = −DTSr(t1). (4.323)

The point is now that we have three equations (4.319) and (4.322), which can be
combined to give

p = R(t)x+ h(t), (4.324)

where we have defined

R(t) = (Φ22 −R(t1)Φ21)
−1(R(t1)Φ11 − Φ21) (4.325)

h(t) = (Φ22 −R(t1)Φ21)
−1(R(t1)h1 − h2 + h(t1)) (4.326)

Note thatR(t) is the solution to the Riccati equation−Ṙ = ATR+RA−RBP−1BTR+
DTQD with final value R(t1) = DTSD, and that h(t) is a solution to the differential
equation −ḣ = (A − BP−1BTR(t))Th + (RC − DTQ)r with final value as above,
i.e. h(t1) = −DTSr(t1). h(t) is often refereed to as a feed-forward signal.

Tracking a step change

Define the reference as

r(t) =

{
0 ∀ t0 ≤ t < ts
r0 ∀ ts ≤ t ≤ t1

(4.327)
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where r0 is a constant.

In order to compute the feed-forward signal from (4.326) we have to define the signals
h1 and h2.

For t0 ≤ t < ts we have[
h1
h2

]
=

∫ t1

t
eF (t1−τ)

[
C

DTQ

]
r(τ)dτ

=

∫ ts

t
eF (t1−τ)

[
C

DTQ

] =0︷︸︸︷
r(τ) dτ +

∫ t1

ts

eF (t1−τ)

[
C

DTQ

] =r0︷︸︸︷
r(τ) dτ

= (

∫ t1

ts

eF (t1−τ)dτ)

[
C

DTQ

]
r0 (4.328)

Hence, the problem is a function of the transition matrix. Note that if F is non-
singular [

h1
h2

]
= F−1(eF (t1−ts) − I2n)

[
C

DTQ

]
r0 (4.329)

Remark that h1 and h2 are constant vectors in this case.

For ts ≤ t < t1 we have[
h1
h2

]
=

∫ t1

t
eF (t1−τ)

[
C

DTQ

]
r(τ)dτ

= (

∫ t1

t
eF (t1−τ)dτ)

[
C

DTQ

]
r0 (4.330)

and for F non-singular[
h1
h2

]
= F−1(eF (t1−t) − I2n)

[
C

DTQ

]
r0 (4.331)

Remark that h1 and h2 are in general time variant functions in this case. The
problem of computing h1 and h2 is relatively simple in case of a constant reference
or a step change in the reference signal. Constant step change reference signals is
also frequently used in practice.

Example 4.11
For a scalar system

ẋ = ax+ bu (4.332)

y = x (4.333)

where the initial state x(t0) is given and with performance index

J =
1

2
s(r(t1)− y(t1))

2 +
1

2

∫ t1

t0

q(r − y)2 + puTdt. (4.334)
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we have that the elements in the transition matrix Φ = eF (t1−t) are given by

ϕ11 =
a

λ
sinh(λ(t1 − t)) + cosh(λ(t1 − t)), (4.335)

ϕ21 = − q

λ
sinh(λ(t1 − t)), (4.336)

ϕ12 = −λ2 − a2

λq
sinh(λ(t1 − t)), (4.337)

ϕ22 = −a

λ
sinh(λ(t1 − t)) + cosh(λ(t1 − t)). (4.338)

The solution is

u = − b

P
p(t) (4.339)

where the co-state is

p = r(t)x+ h(t) (4.340)

where

r(t) =
sϕ11 − ϕ21

ϕ22 − sϕ12
(4.341)

h(t) =
sh1 − h2 − sr(t1)

ϕ22 − sϕ12
(4.342)

In order to compute h(t) we need to find h1 and h2. The reference is a step change
from zero to r0 at time ts, i.e. as defined in (4.327). We can use (4.329) and (4.330)
directly.

For t0 ≤ t < ts we have[
h1
h2

]
=

∫ t1

ts

eF (t1−τ)dτ

[
0
q

]
r0 =

∫ t1

ts

[
ϕ12

ϕ22

]
dτqr0

=

[
λ2−a2

λ2 cosh(λ(t1 − τ))
qa
λ2 cosh(λ(t1 − τ))− q

λ sinh(λ(t1 − τ))

]t1
ts

qr0 (4.343)

which gives[
h1
h2

]
=

[
λ2−a2

λ2 (1− cosh(λ(t1 − ts)))
qa
λ2 (1− cosh(λ(t1 − ts))) +

q
λ sinh(λ(t1 − ts))

]
r0, t0 ≤ t < ts (4.344)

and [
h1
h2

]
=

[
λ2−a2

λ2 (1− cosh(λ(t1 − t)))
qa
λ2 (1− cosh(λ(t1 − t))) + q

λ sinh(λ(t1 − t))

]
r0, ts ≤ t < t1 (4.345)



Chapter 5

Optimal Control of Discrete
Time Systems

5.1 The discrete maximum principle

Given a discrete time dynamic process described by the model

xk+1 − xk = f(xk, uk, k), (5.1)

where k is discrete time. f(·) is in general a nonlinear vector function.

Furthermore, we assume an optimal performance index (criterion) of the form

Ji = S(xN ) +
N−1∑
k=i

L(xk, uk), (5.2)

where S(·) is a scalar weighting function of the state at the final time instant N ,
L(·, ·) is a scalar weighting function of the state vector xk and the control input
vector uk over the time horizon i ≤ k ≤ N − 1. Both S(·) and L(·, ·) may be non
linear functions.

By investigating this criterion we se that the discrete start time is k = i and that
the discrete final time is k = N . We assume that N > i. The criterion is defined
over a time horizon of N − i + 1 discrete time instants. We also observe that the
criterion only is dependent of the control inputs at N − i time instants. Hence, this
means that a part ov the criterion is not dependent of the unknown control inputs,
and the criterion may be splitted into two parts. More of this later on.

We will in the following present the discrete time Maximum Principle which is a
method for solving the discrete time optimal control problem

We define the discrete time Hamiltonian function corresponding to the continuous
case. We have

Hk = L(xk, uk) + pTk+1f(xk, uk, k)

= L(xk, uk) + pTk+1(xk+1 − xk). (5.3)
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In order for the existence of an optimal control which minimize the criterion Ji it is
necessary that:

� The impulse vector, p, and the state vector, x, satisfy the differential equations

xk+1 − xk =
∂Hk

∂pk+1
= f(xk, uk, k), (5.4)

pk+1 − pk = −∂Hk

∂xk
, (5.5)

with known boundary (initial and final value) conditions

xi = x0, (5.6)

pN =
∂S

∂xN
. (5.7)

The state space model (5.1) have boundary conditions at the initial time in-
stant. But remark that the model for the impulse vector (5.7) have boundary
condition at the final time instant. This is defined as a two-point boundary
value problem.

� The Hamiltonian function, Hk, must have an a absolute minimum (ore max-
imum) with respect to the unknown control uk ∈ U where U is the allowed
control space. This must hold for all time instants k = i, · · · , N−1. This means
that we may include constraints on the control vector uk. Those constraints
define the control space U .

Conditions for a minimum is that

∂Hk

∂uk
= 0, (5.8)

and

∂2Hk

∂u2k
> 0. (5.9)

5.2 Discrete optimal control of linear dynamic systems

Assume that the process may be described by the discrete time state space model

xk+1 = Akxk +Bkuk, (5.10)

where xk ∈ Rn is the state vector of the dynamic process and uk ∈ Rr is the control
vector. Ak ∈ Rn×n is the transition matrix which in general may be time variant
Bk ∈ Rn×r is the control input system matrix.

Consider an optimal criterion of the Linear Quadratic (LQ) form

Ji =
1

2
xTNSNxN +

1

2

N−1∑
k=i

(xTkQkxk + uTk Pkuk), (5.11)
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where SN , Qk and Pk are symmetric weighting matrices. Note that the weighting
matrices in general may be time variant. We will later on specify further detectability
assumptions on the weighting matrices.

We will in the following find the optimal control, u∗k, which minimize the optimal
criterion Equation (5.11). We start by writing down the Hamiltonian function, i.e.,

Hk =
1

2
(xTkQkxk + uTk Pkuk) + pTk+1(

xk+1−xk︷ ︸︸ ︷
(Ak − I)xk +Bkuk). (5.12)

We have used that the state space model equation (5.10) may be written as

xk+1 − xk = (Ak − I)xk +Bkuk. (5.13)

The optimal control is then found from

∂Hk

∂uk
= Pkuk +BT

k pk+1 = 0, (5.14)

which gives give

uk = −P−1
k BT

k pk+1. (5.15)

if the weighting matrix is non-singular (invertible). One should note that we later
on, in Sec 5.2.2, will present a version which does not involve the inversion of the
weighting matrix Pk.

Putting equation (5.14) into the linear state space model gives

xk+1 = Akxk −BkP
−1
k BT

k pk+1. (5.16)

We will later on use this expression for xk+1 in order for defining an expression for
the optimal control. The impulse vector is defined from Equation (5.5). We have

pk+1 − pk = −∂Hk

∂xk
= −Qkxk − (Ak − I)T pk+1, (5.17)

which may be presented simply as

pk = Qkxk +AT
k pk+1. (5.18)

Equations (5.16) and (5.18) defines an autonomous system, i.e.,[
xk+1

pk

]
=

[
Ak −H
Qk AT

k

] [
xk
pk+1

]
, (5.19)

where the matrix H is defined as

H = BkP
−1
k BT

k . (5.20)

This matrix should not be compared with the Hamiltonian function Hk.

Note that in Equation (5.19) the state vector and the impulse vector are defined
at different time instants at the same side of the equality sign. In case when Ak is
non-singular we find from (5.16) that

xk = A−1
k xk+1 +A−1

k Hpk+1. (5.21)



90 Optimal Control of Discrete Time Systems

Putting this into (5.18) we find that

pk = QkA
−1
k xk+1 + (AT

k +QkA
−1
k H)pk+1. (5.22)

Equations (5.21) and (5.22) may be written in matrix form as follows

[
xk
pk

]
=

F︷ ︸︸ ︷[
A−1

k A−1
k H

QkA
−1
k AT

k +QA−1
k H

] [
xk+1

pk+1

]
. (5.23)

Note that the transition matrix Ak is invertible if the model is obtained by discretiz-
ing a continuous time model. You should note that (5.23) may be used in order to
show that there is a linear relationship between pk and xk, i.e., pk = Rkxk as well
as to find an equation for Rk.

The prof of this is as follows. From (5.7) we find the boundary condition pN =
SNxN . This indicates that there is a linear relationship between xk and pk. Putting
k = N − 1 in (5.23) gives, with using the boundary conditions, two equations with
three unknown, pN−1, xN−1 og xN . Eliminating xN we find the linear relationship

pN−1 = RN−1xN−1, (5.24)

RN−1 = (F21 + F22SN )(F11 + F12SN )−1. (5.25)

Putting k = N − 2 into (5.23) and doing the same, i.e., finding a linear relationship
between pN−2 and xN−2. Since that we have a series to do, we use the induction
principle for the prof, i.e., we can prove that there is a linear relationship between
pk and xk. We will later on generalize this to hold also when Ak is singular.

In the same way as in the continuous case, and which is sketched above, we may
show that there is a linear relationship between the impulse vector, pk, and the state
vector, xk. Hence, we may show and assume that

pk = Rkxk. (5.26)

This means that if we may find an equation for defining/computing Rk then we
indeed have proved that there exist such a relationship as described above. This
also indicates an alternative prof of the LQ optimal solution to the one given above.
This prof is presented in the following

Putting (5.18) into (5.26) gives

Rkxk = Qkxk +AT
k pk+1. (5.27)

Expressing (5.26) at time instant k + 1 and putting this expression into (5.27) we
find

Rkxk = Qkxk +AT
kRk+1xk+1. (5.28)

We will now find an expression for xk+1 and putting this into (5.28). Putting the
relationship (5.26) into (5.16) gives

xk+1 = Axk −BkP
−1
k BT

k Rk+1xk+1. (5.29)
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From this last equation we find an expression for for xk+1

xk+1 = (I +BkP
−1
k BT

k Rk+1)
−1Akxk. (5.30)

Note that (5.30) have to be an expression for the closed loop system. Putting
equation (5.30) into (5.28) gives

Rkxk = Qkxk +AT
kRk+1(I +BkP

−1
k BT

k Rk+1)
−1Akxk. (5.31)

This equation must hold for an arbitrarily state vector xk ̸= 0. This gives the
following matrix equation for finding Rk.

Rk = Qk +AT
kRk+1(I +BkP

−1
k BT

k Rk+1)
−1Ak. (5.32)

This is one formulation of the famous Riccati equation named after Count Riccati
which lived in the 1600 century. However, this formulation assumes that the con-
trol weighting matrix, Pk, is non-singular. We will later show that there exist a
more general formulation of the discrete Riccati equation wich does not involve the
inversion of Pk.

An alternative formulation in the case when Rk+1 is non-singular is

Rk = Qk +AT
k (R

−1
k+1 +BkP

−1
k BT

k )
−1Ak. (5.33)

From (5.7) we find the boundary condition

pN = SNxN . (5.34)

Expressing the relationship (5.26) at k = N we find that

pN = RNxN . (5.35)

Comparison of (5.34) and (5.35) gives the boundary condition

RN = SN , (5.36)

which gives the boundary condition for the discrete time Riccati equation. This
means that the solution Rk (at time k) may be found by iterating the Riccati equa-
tion backward in time, to the present time instant k, from the final time instant,
k = N .

An expression for the optimal control can now be found by putting (5.26) into (5.15),
i.e.,

uk = −P−1BTRk+1xk+1. (5.37)

Putting (5.30) into (5.37) gives

uk = Gkxk, (5.38)

Gk = −P−1BTRk+1(I +BP−1BTRk+1)
−1A. (5.39)

As we see, the above solution assumes that the weighting matrix Pk is non-singular.
We will in the next section propose a better solution which does not involve the
inversion of Pk.
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Consider now the case in which the time horizon is large, i.e., N → ∞, then we
have that Rk+1 = Rk = R is a constant matrix. This gives us the Discrete time
Algebraic Riccati Equation (DARE). Furthermore, we may show that when choosing
the weighting matrices properly then the LQ optimal solution results in a stable
closed loop system. In general we have that the LQ optimal control system is
stable when N → ∞, under the assumptions that (A,B) is stabilizable, (

√
Q,A) is

detectable and P a positive definite matrix. As mentioned above, there may also in
certain circumstances exist an LQ optimal solution also when P is singular.

5.2.1 Derivation of the optimal control: intuitive formulation

The solution to the discrete time LQ optimal control problem may be formulated in
different ways and with different equations. In case when the transition matrix Ak

is non-singular then we may find pk+1 from Equation (5.18), i.e.,

pk+1 = A−T (pk −Qkxk) = A−T (Rk −Qk)xk, (5.40)

where we have assumed that pk = Rkxk. Putting this into the expression for the
optimal control given by Equation (5.15), we find

uk = Gkxk, (5.41)

Gk = −P−1
k BT

k A
−T
k (Rk −Qk). (5.42)

This solution demands that both Ak and Pk are non-singular matrices. Ak is usually
non-singular. This is in particular the case when Ak is found from discretizing a
continuous time model. There may however exist cases in which Ak is singular.
This is the case for systems with a static component and for systems with time
delay modeled as extra ”dummy” states in the system in order to take care of the
time delay.

5.2.2 Derivation of the optimal control: a better formulation

We may show that there exist a formulation of the discrete LQ optimal solution
which does not involve the inversion of the matrices Ak and Pk. We have from the
condition for a minimum ∂Hk

∂uk
= Pkuk +BT

k pk+1 = 0, equation (5.14), that

Pkuk = −BT
k Rk+1xk+1, (5.43)

where we have assumed pk+1 = Rk+1xk+1. Putting the state space model into (5.43)
gives

Pkuk = −BT
k Rk+1(Akxk +Bkuk). (5.44)

This gives

(Pk +BT
k Rk+1Bk)uk = −BT

k Rk+1Akxk. (5.45)

This gives the following nice expression for the optimal control

u∗k = Gkxk, (5.46)

Gk = −(Pk +BT
k Rk+1Bk)

−1BT
k Rk+1Ak. (5.47)
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Rk+1 may be found from the Riccati equation (5.32) or (5.33). However, we will in
the next section derive a 3rd formulation of the discrete time Riccati equation which
is to be preferred compared to Equations (5.32) and (5.33).

5.2.3 Alternative formulations of the discrete time Riccati equation

The discrete time Riccati equation in the LQ optimal control solution may be formu-
lated in different ways. In Section (5.2) we have derived two different formulations.
Se Equations (5.32) and (5.33). We will in this section propose two different for-
mulations which does not involve the inversion of the weighting matrix Pk. These
formulations are may be the most used formulations.

The starting point is as shown earlier, i.e., by putting Equation (5.18) (i.e. pk =
Qxk +AT pk+1) into equation (5.26) (i.e. pk = Rkxk), we have

Rkxk = Qkxk +AT
kRk+1xk+1, (5.48)

where we have used that at pk+1 = Rk+1xk+1.

An expression for the closed loop system is obtained by putting the optimal control
(5.46) and (5.47) into the discrete time state Equation xk+1 = Akxk + Bkuk. This
gives

xk+1 = (Ak −Bk(Pk +BT
k Rk+1Bk)

−1BT
k Rk+1Ak)xk. (5.49)

Putting (5.49) into (5.48) gives

Rkxk = Qkxk +AT
kRk+1(Ak −Bk(Pk +BT

k Rk+1Bk)
−1BT

k Rk+1Ak)xk. (5.50)

This equation must hold for all states xk ̸= 0. Hence we have,

Rk = Qk +AT
k (Rk+1 −Rk+1Bk(Pk +BT

k Rk+1Bk)
−1BT

k Rk+1)Ak. (5.51)

This formulation of the discrete time Riccati equation is to be preferred. As we
see, only the matrix Pk + BT

k Rk+1Bk have to be inverted. Note that the boundary
condition is as before, i.e. RN = SN .

Finally, we will present a 4th formulation of the Riccati equation. Hence, we may
show that

Rk = (Ak +BkGk)
TRk+1(Ak +BkGk) +GT

k PkGk +Qk, (5.52)

Gk = −(Pk +BT
k Rk+1Bk)

−1BT
k Rk+1Ak. (5.53)

This formulation of the discrete time Riccati equation is known in the litterature as
the Josephs stable version of the Riccati equation. As we see, this Riccati equation
consists only of symmetric terms. This formulation is to be preferred in numerical
calculations.

We also se that for a given control gain matrix, Gk, then Equation (5.52) is a discrete
time Lyapunov equation. Equations (5.52) and (5.53) can with advantage be used
in order to iterate to find the stationary solution to the LQ optimal control problem,
i.e. the problem with infinite horizon N → ∞.

Note that the boundary conditions to the different formulations of the Riccati equa-
tion is the same, i.e., RN = SN where SN is the weighting matrix for the final state,
xN .
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Example 5.1 (MATLAB m-file: Solving the DARE)
The following m-file function solves the Discrete Algebraic Riccati equation (DARE)
by iterating on the Josephs stable formulation of the Discrete Riccati Eqs. (5.52)
and (5.53).

function [G,R]=dric_solv(A,B,S,Q,P,N);

% DRIC_SOLV

% [G,R]=dric_solv(A,B,S,Q,P,N);

% Iterate Riccati-equation backward

% in time from k=N+1 to k=1.

R=S;

for k=N:-1:1

G = -inv(P+B’*R*B)*B’*R*A;

R = (A+B*G)’*R*(A+B*G)+G’*P*G+Q; % Josehps stabilized version of Riccati eq.

end

5.2.4 Numerical example

Example 5.2 (Singular transition matrix)
Given a system described by a linear discrete state space model with the following
model matrices

A =

[
0 1
0 0

]
, B =

[
0√
2

]
, D =

[
1 −1

]
, (5.54)

and with weighting matrices

P = 1, Q = DTD =

[
1 −1

−1 1

]
, SN = Q. (5.55)

We chose the following initial value for the state vector, i.e.,

xi =

[
x1,i
x2,i

]
=

[
2
1

]
, (5.56)

and simulate the optimal closed loop system over the time horizon i ≤ k ≤ N where
i = 0 and N = 5. This gives after N = 5 iterations of the Riccati equation (5.53)

R0 =

[
1 −1

−1 1.4993

]
, R1 =

[
1 −1

−1 1.497

]
, R2 =

[
1 −1

−1 1.488

]
, (5.57)

R3 =

[
1 −1

−1 1.455

]
, R4 =

[
1 −1

−1 1.333

]
, R5 =

[
1 −1

−1 1

]
(5.58)

and where R5 = S5 is defined from the specified final boundary value condition. It
can be shown, se Pappas og Laub (1980), that the solution of the stationary discrete
Riccati equation, i.e. the solution when N → ∞, is given by

R =

[
1 −1

−1 3
2

]
. (5.59)
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In general we have that limN→∞R0 = R. We se that even for a ”short” horizon
as N = 5 then R0 is a relatively good approximation to the stationary solution, for
this example.

Furthermore, the optimal time variant feedback matrices are given by

Gk =
[
0

√
2

1+2r22,k+1

]
∀ k = 0, . . . , 4 (5.60)

where r22,k+1 is the lower right element in Rk+1. This means that the optimal control
is given by a feedback

uk =

√
2

1 + 2r22,k+1
x2,k (5.61)

where x2,k is the 2nd state in the state vector (5.56). For this system it is optimal to
only take feedback from one of the two states in the system. This is unusual because
it in general is optimal with a feedback from all states in the system.

We remark that the system (A,B) is controllable and that (D,A) is observable.
One special remark is that the system have two poles (eigenvalues) in origo. This
means that the open loop system has infinite fast dynamics. The optimal system
minimizes the objective Ji. The objective will in general obtain a small value if the
state xk goes fast to zero. It is therefore not optimal to make the system slower then
necessary.

Simulations of the optimal control uk = Gkxk and xk is shown in Figure 5.1.

We end this example by mentioning that for systems with transport delay modeled
as extra states, then the transition matrix will have eigenvalues in origo, and the
optimal control will have a structure relatively equal to the above example.
△

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4
Control inputs u_k

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2
States x_k

Diskrete time [samples]

x_k^1

x_k^2

Figure 5.1: The Figure illustrates simulations of uk and xk for example 5.2. The
discrete initial time is i = 0 and the final time instant is N = 5.



96 Optimal Control of Discrete Time Systems

5.2.5 Summing up: The Discrete LQ (DLQ) optimal control prob-
lem

We will sum up some results in the following theorem

Theorem 5.2.1 (Discrete time Linear Quadratic optimal regulator)
Given the discrete time system

xk+1 = Akxk +Bkuk, (5.62)

where k ≥ i and the initial value of the state vector, xi, is given.

Consider given a LQ criterion valid over the time horizon i ≤ k ≤ N , i.e.,

Ji =
1

2
xTNSNxN +

1

2

N−1∑
k=i

(xTkQkxk + uTk Pkuk), (5.63)

where SN , Qk and Pk are symmetric weighting matrices.

The optimal control vector, u∗k, which is minimizing the LQ criterion, Ji, is given by

uk = Gkxk, (5.64)

Gk = −(Pk +BT
k Rk+1Bk)

−1BT
k Rk+1Ak, (5.65)

where Rk+1 is the positive solution to the Discrete time Riccati equation

Rk = Qk +AT
k (Rk+1 −Rk+1Bk(Pk +BT

k Rk+1Bk)
−1BT

k Rk+1)Ak, (5.66)

with final value boundary condition

RN = SN . (5.67)

Furthermore, the minimum value of the criterion, Ji, is given by

Ji =
1

2
xTi Rixi. (5.68)

and where Ri is found from the Riccati equation. △

Merknad 5.1 In some references it is common to define the state feedback matrix
as Kk = −Gk, and uk = −Kkxk instead of uk = Gkxk as in these lecture notes.
This is in particular the case as e.g. in Lewis and Syrmos (1995). The MATLAB
Control System Toolbox also uses the notation K = −G, se e.g. the dlqr function.

5.2.6 Standard Discrete time Linear Quadratic (DLQ) optimal con-
trol with infinite horizon

Theorem 5.2.2 (Discrete time Linear Quadratic (DLQ) optimal regulator)

Given a linear discrete time system

xk+1 = Axk +Buk, (5.69)

yk = Dxk, (5.70)



5.2 Discrete optimal control of linear dynamic systems 97

where k ≥ i and the initial value of the state vector, xi, is given.

Consider given a discrete time LQ criterion valid over an infinite horizon, i.e. time
horizon i ≤ k ≤ ∞,

Ji =
1

2

∞∑
k=i

(yTk Qyk + uTk Puk) =
1

2

∞∑
k=i

(xTk Q̃xk + uTk Puk), (5.71)

where Q̃ = DTQD. Q and P are symmetric weighting matrices.

The optimal control vector, u∗k, which is minimizing the LQ criterion, Ji, is given by

u∗k = Gxk, (5.72)

G = −(P +BTRB)−1BTRA, (5.73)

where R > 0 is the positive definite solution to the Discrete time Algebraic Riccati
Equation(DARE)

R = DTQD +ATRA−ATRB(P +BTRB)−1BTRA. (5.74)

Furthermore, the minimum value of the criterion, Ji, is given by

Ji =
1

2
xTi Rxi. (5.75)

and where R > 0 is found from the DARE. △

Notice that the solution Rk to the discrete Riccati equation in Theorem 5.2.1 usually
converges in a few number of samples to the solution R of the Discrete Algebraic
Riccati Equation (DARE) in Theorem 5.2.2. This is illustrated as in e.g. Example
5.2.

5.2.7 Linear Quadratic (DLQ) optimal control: Cross weighting in
the objective

Theorem 5.2.3 (DLQ optimal regulator: cross weighting)
Given a linear discrete time system

xk+1 = Axk +Buk, (5.76)

yk = Dxk + Euk, (5.77)

where k ≥ i and the initial value of the state vector, xi, is given.

Consider given a discrete time LQ criterion valid over an infinite horizon, i.e. time
horizon i ≤ k ≤ ∞,

Ji =
1

2

∞∑
k=i

(yTk Qyk + uTk Puk), (5.78)

which gives the following objective with a cross weighting between xk and uk (here
we have used the output equation Eq. (5.77) in the objective (5.78))

Ji =
1

2

∞∑
k=i

(xTk Q̃xk + 2xTkNuk + uTk P̃ uk), (5.79)
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where Q̃ = DTQD, N = DTQE and P̃ = P + ETQE. Q and P are symmetric
weighting matrices.

The optimal control vector, u∗k, which is minimizing the LQ criterion, Ji, is given by

u∗k = Gxk, (5.80)

G = −(P +BTRB)−1(BTRA+NT ), (5.81)

where R > 0 is the positive definite solution to the Discrete time Algebraic Riccati
Equation(DARE)

R = DTQD +ATRA− (ATRB +N)(P +BTRB)−1(BTRA+NT ). (5.82)

△

Furthermore, notice that the results in Theorem 5.2.3 are identical with the results
in Theorem 5.2.2 when the cross weighting matrix N = 0 in the objective, and or
when E = 0.

Theorem 5.2.3 may be proved from the Maximum principle. The Hamiltonian func-
tion of the objective in Eq. (5.79) and the state equation (5.76) is

Hk =
1

2
(xTkQxk + 2xTkNuk + uTk Puk) + pTk+1(xk+1 − xk)

=
1

2
(xTkQxk + 2xTkNuk + uTk Puk) + pTk+1((A− I)xk +Buk). (5.83)

The optimal control is found from

∂Hk

∂uk
= NTxk + Puk +BT pk+1 = 0. (5.84)

Using that pk = Rxk gives

NTxk + Puk +BTRxk+1 = NTxk + Puk +BTR(Axk +Buk) = 0. (5.85)

This gives

(P +BTRB)uk = −(BTRA+NT )xk, (5.86)

and the optimal control

u∗k = −(P +BTRB)−1(BTRA+NT )xk, (5.87)

The Riccati equation is derived from

pk+1 − pk = −∂Hk

∂xk
. (5.88)

This gives

pk+1 − pk = −(Qxk +Nuk + (AT − I)pk+1) (5.89)

and

pk = Qxk +AT pk+1 +Nuk. (5.90)
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This gives

pk = Qxk +ATR(Axk +Buk) +Nuk = Qxk +ATRAxk + (ATRB +N)uk.(5.91)

Using the optimal control and the relation pk = Rxk.

Rxk = Qxk +ATRAxk − (ATRB +N)(P +BTRB)−1(BTRA+NT )xk. (5.92)

This equation must hold for all non trivial xk ̸= 0 and we have

R = Q+ATRA− (ATRB +N)(P +BTRB)−1(BTRA+NT ), (5.93)

which is Eq. (5.82) in Theorem 5.2.3.

5.2.8 Discrete LQ optimal control objective: Compact formulation

Notice that the LQ terms in the objective may be written more compact as discussed
in the following. The function under the summation in the discrete LQ objective in
Sec. 5.1 and Eq. (5.2) is

L(xk, uk) =
[
xTk uTk

] [Q 1
2M

1
2M

T P

] [
xk
uk

]
=

[
xTkQ+ 1

2u
T
kM

T 1
2x

T
kM + uTk P

] [ xk
uk

]
= xTkQxk +

1

2
uTkM

Txk +
1

2
xTkMuk + uTk Puk

= xTkQxk + xTkMuk + uTk Puk, (5.94)

because 1
2u

T
kM

Txk and 1
2x

T
kMuk are scalars and then 1

2u
T
kM

Txk + 1
2x

T
kMuk =

xTkMuk.

5.3 Optimal tracking in discrete time systems

Given a system described by a linear discrete time state space model

xk+1 = Akxk +Bkuk + Crk, (5.95)

yk = Dxk, (5.96)

where k ≥ i is discrete time and the initial state xi is given. xk ∈ Rn is the state
vector, uk ∈ Rm is the control input vector and yk ∈ Rm is the output vector.

We want the output, yk, to be as close as possible to a known reference vector, rk. In
this case it make sense to use a control input, uk, which minimize a control objective
where the deviation rk − yk is weighted in the objective. But control action costs so
the control input, uk, is also weighted in the objective.
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We study the following control objective (ore performance index).

Ji =
1

2
(rN −DxN )TSN (rN −DxN ) +

1

2

N−1∑
k=i

[(rk −Dxk)
TQk(rk −Dxk) + uTk Pkuk]

(5.97)

where SN ∈ Rm×m, Qk ∈ Rm×m and Pk ∈ Rr×r, is symmetric weighting matrices.

Note that the reference vector, rk, is influencing in the state equation (5.95).

usually, C = 0, but if we want integral action in the control system then an integrator
for the deviation rk − yk may be augmented in the model and a model of the form
(5.95) is the result. The optimal control consist of a feedback from the complete
state vector. Assume that a state equation of the form xk+1 = Akxk + Bkuk is
augmented with an integrator zk+1 = zk + ek where ek = rk − yk then the result is
a state space model of the form as in Equation (5.95) with C ̸= 0.

The state equation Equation (5.95) may be written as

xk+1 − xk = (Ak − I)xk +Bkuk + Crk. (5.98)

The Hamiltonian function is then given by

Hk =
1

2
[(rk −Dxk)

TQk(rk −Dxk) + uTk Pkuk] + pTk+1[(Ak − I)xk +Bkuk + Crk].

(5.99)

A 1st order confition for the existence of an optimal control vector, u∗k, which mini-
mizes the performance index Ji with the state space model as condition is that

∂Hk

∂uk
= Pkuk +BT

k pk+1 = 0. (5.100)

We will firthermore assume the following relationship between the impulse vector,
pk, and the state vector, xk, i.e.,

pk = Rkxk + hk, (5.101)

where Rk ∈ Rn×n is an unknown matrix and where hk ∈ Rn is an unknown n-
dimensional vector.

Putting (5.101) into (5.100) gives

Pkuk +BT
k Rk+1xk+1 +BT

k hk+1 = 0. (5.102)

Substituting the state equation into this expression gives

Pkuk +BT
k Rk+1(Akxk +Bkuk + Crk) +BT

k hk+1 = 0. (5.103)

Solving with respect to uk gives

uk = −(Pk +BT
k Rk+1Bk)

−1(BT
k Rk+1Akxk +BT

k Rk+1Crk +BT
k hk+1). (5.104)
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From the maximum principle we have that the impulse vector is given by

pk+1 − pk = −∂Hk

∂xk
= −DTQkDxk +DTQkrk − (Ak − I)T pk+1. (5.105)

This may be simplified to

pk = DTQkDxk −DTQkrk +AT
k pk+1. (5.106)

Using the relationship pk = Rkxk + hk gives

Rkxk + hk = DTQkDxk −DTQkrk +AT
k pk+1

= DTQkDxk −DTQkrk +AT
kRk+1xk+1 +AT

k hk+1. (5.107)

We can now find an expression for xk+1 as a function of xk by substituting the
expression for the optimal control equation (5.104) into the state equation, equation
(5.95). For simplicity we write the optimal control as follows

u∗k = G1xk +G2Crk +G3hk+1, (5.108)

G1 = −(Pk +BT
k Rk+1Bk)

−1BT
k Rk+1Ak, (5.109)

G2 = −(Pk +BT
k Rk+1Bk)

−1BT
k Rk+1, (5.110)

G3 = −(Pk +BT
k Rk+1Bk)

−1BT
k . (5.111)

Hence, we have the following expression for the closed loop system

xk+1 = (A+BG1)xk + (BG2 + I)Crk +BG3hk+1. (5.112)

Putting Equation (5.112) into Equation (5.107) gives

Rkxk + hk = DTQkDxk −DTQkrk +AT
k hk+1

+AT
kRk+1[(A+BG1)xk + (BG2 + I)Crk +BG3hk+1] . (5.113)

This may be written as follows

[−Rk +DTQkD +AT
kRk+1(A+BG1)]xk+

[−hk −DTQkrk +AT
k hk+1 +AT

kRk+1(BkG2 + I)Crk +AT
kRk+1BkG3hk+1] .(5.114)

This equation must hold for all xk ̸= 0. In order for this to hold the expressions in
the brackets have to be zero. We have the equations for Rk and hk+1, i.e.,

Rk = DTQkD +AT
kRk+1(A+BG1), (5.115)

and

hk = (A+BG1)
Thk+1 −DTQkrk +AT

kRk+1(BkG2 + I)Crk. (5.116)

Equation (5.115) is the famous discrete time Riccati equation. Equation (5.116) is a
difference equation for the feedforward signal hk due to the external reference signal
rk. Equations (5.115) and(5.116) is solved backward in time from the final time
instant, k = N . This means that we have to know some border conditions at the
final time instant. This is discussed in the next section.
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5.3.1 Border conditions

From the Maximum principle we have the border conditions

pN =
∂

∂xN

[
1
2(rN −DxN )TSN (rN −DxN )

]
, (5.117)

which is equivalent with

pN =
∂

∂xN

[
1
2r

T
NSNrN − rTNSNDxN + 1

2x
T
NDTSNDxN

]
. (5.118)

Derivation gives

pN = DTSNDxN −DTSNrN . (5.119)

Expressing Equation (5.101) at time k = N gives

pN = RNxN + hN . (5.120)

Comparing Equations (5.119) and (5.120) gives us the final time (value) conditions

RN = DTSND, (5.121)

hN = −DTSNrN . (5.122)

5.3.2 Summary

The results in this section is summed up in the following Theorem 5.3.1.

Theorem 5.3.1 (Optimal tracking in discrete time systems)
Given a discrete time state space model

xk+1 = Akxk +Bkuk + Crk, (5.123)

yk = Dxk, (5.124)

and a Linear Quadratic (LQ) control objective (performance index) defined over the
finite time horizon i ≤ k ≤ N

Ji =
1
2(rN −DxN )TSN (rN −DxN )

+1
2

∑N−1
k=i [(rk −Dxk)

TQk(rk −Dxk) + uTk Pkuk], (5.125)

where SN ∈ Rm×m, Qk ∈ Rm×m and Pk ∈ Rr×r are symmetric positive semi-definite
weighting matrices.

The optimal control which minimizes the objective Ji is given by

u∗k = G1xk +G2Crk +G3hk+1, (5.126)

G1 = −(Pk +BT
k Rk+1Bk)

−1BT
k Rk+1Ak, (5.127)

G2 = −(Pk +BT
k Rk+1Bk)

−1BT
k Rk+1, (5.128)

G3 = −(Pk +BT
k Rk+1Bk)

−1BT
k . (5.129)
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Rk+1 is the solution to the discrete Riccati-equation,

Rk = DTQkD +AT
kRk+1(A+BG1), (5.130)

and the feed forward signal vector hk+1 is given from the difference equation

hk = (A+BG1)
Thk+1 −DTQkrk +AT

kRk+1(BkG2 + I)Crk. (5.131)

The border conditions is at the final time instant k = N given by

RN = DTSND, (5.132)

hN = −DTSNrN . (5.133)

△

Theorem 5.3.2 (Optimal tracking: Minimum of the objective Ji)
Given the state space model, Equations (5.123) and (5.124) mith C = 0. Given the
solution to the LQ optimal control problem as presented in Theorem 5.3.1.

The minimum of the control objective (performance index), equation (5.125) over
the discrete time horizon i ≤ k < N where i is the initial time, is given by

J∗
k =

1

2
xTkRkxk + xTk hk + wk, (5.134)

where hk is given by Equation (5.131) and where the signal wk satisfies the difference-
equation

wk = wk+1 +
1

2
rTk Qkrk −

1

2
hTk+1Bk(B

T
k Rk+1Bk + Pk)

−1BT
k hk+1, (5.135)

with border conditions at the final time instant given by

wN =
1

2
rTNSNrN . (5.136)

△

5.4 Weighting control deviations in the LQ objective

5.4.1 Standard LQ control and weighting control deviations

Assume given a system described by a linear discrete time state space model

xk+1 = Akxk +Bkuk, (5.137)

yk = Dxk. (5.138)

Consider the problem of minimizing the LQ objective

Ji =
1

2
yTNSNyN +

1

2

N−1∑
k=i

(yTk Qkyk +∆uTkRk∆uk) (5.139)
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with respect to the control deviations ∆uk ∀ k = 1, . . . , N − 1.

Notice that we now have the choice of formulating the problem in terms of deviation
variables ∆uk = uk − uk−1 or in terms of actual control variables uk. We chose to
formulate the problem in terms of control input deviations ∆uk. The two alternatives
gives the same results anyway.

the problem may be reformulated as a standard LQ optimal control problem. We
start by augmenting the process model eq. (5.137) with uk = uk−1 + ∆uk. This
gives the augmented state space model

x̃k+1︷ ︸︸ ︷[
xk+1

uk

]
=

Ãk︷ ︸︸ ︷[
Ak Bk

0r×n Ir×r

] x̃k︷ ︸︸ ︷[
xk
uk−1

]
+

B̃k︷ ︸︸ ︷[
Bk

Ir×r

]
∆uk (5.140)

yk =

D̃︷ ︸︸ ︷[
D 0m×r

] x̃k︷ ︸︸ ︷[
xk
uk−1

]
(5.141)

where 0n×r and 0m×r is an n× r matrix and m× r matrix with zeroes, respectively.
Ir×r is an r × r identity matrix.

The LQ criterion may be written as

Ji =
1
2

[
xN
uN−1

]T S̃N︷ ︸︸ ︷[
DTSND 0

0 0

] [
xN
uN−1

]

+
∑N−1

k=i (

[
xk
uk−1

]T Q̃k︷ ︸︸ ︷[
DTQkD 0

0 0

] [
xk
uk−1

]
+∆uTkRk∆uk) (5.142)

We find the solution to this LQ optimal control problem by using the results in
Theorem 5.2.1 but with model matrices Ãk and B̃k and with weighting matrices
S̃N , Q̃k and P = R. This results in the state feedback matrix G̃k.

The optimal control deviation is then given by

∆uk =

G̃k︷ ︸︸ ︷[
G1 G2

]
k

[
xk
uk−1

]
= G1xk +G2uk−1. (5.143)

The actual optimal control to the process is given by

uk =

∆uk︷ ︸︸ ︷
G1xk +G2uk−1+uk−1 = G1xk + (G2 + Ir×r)uk−1. (5.144)

This optimal controller will among others, if we increase the weight R on the control
deviations ∆uk will give a smother control action uk. The problem presented in this
section can with advantage be extended to weighting the control deviation yk − rk
where rk is a specified reference signal.

In order to get grater insight into the solution of this problem, we may with advan-
tage use the maximum principle directly.
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5.4.2 Optimal tracking and weighting control deviations

An LQ objective which make sense in the case where both the output yk and the
control uk have steady state values different from zero is as follows

Ji =
1

2
(rN − yN )TSN (rN − yN ) +

1

2

N−1∑
k=i

((rk − yk)
TQk(rk − yk) + ∆uTkRk∆uk).(5.145)

Using the augmented model (5.140) and (5.141) we find that the above objective
may be written as

Ji =
1
2(rN − D̃x̃N )TSN (rN − D̃x̃N )

+1
2

∑N−1
k=i ((rk − D̃x̃k)

TQk(rk − D̃x̃k) + ∆uTkRk∆uk). (5.146)

The solution to this LQ optimal control tracking problem is given as presented in
Theorem 5.3.1.

We present the result in the following theorem. However, notice that we have added
the matrix C̃ in the problem solution for the sake of completeness.

Theorem 5.4.1 (Weighting control deviations and optimal tracking)
Given the discrete time state space model

x̃k+1 = Ãkx̃k + B̃k∆uk + C̃rk, (5.147)

yk = D̃x̃k, (5.148)

However, notice that we have added the term C̃rk in the model, for the sake of
completeness of the solution, and notice that the model (5.137) and (5.137) does
not have a term Crk.

Given an LQ objective defined over the time interval i ≤ k ≤ N

Ji =
1
2(rN − D̃x̃N )TSN (rN − D̃x̃N )

+1
2

∑N−1
k=i ((rk − D̃x̃k)

TQk(rk − D̃x̃k) + ∆uTkRk∆uk). (5.149)

where SN ∈ Rm×m, Qk ∈ Rm×m and Pk ∈ Rr×r, are symmetric weighting matrices.

The optimal control which is minimizing the objective Ji is given by

∆uk = G1x̃k +G2C̃rk +G3hk+1, (5.150)

G1 = −(Rk + B̃T
k Rk+1B̃k)

−1B̃T
k Rk+1Ãk, (5.151)

G2 = −(Rk + B̃T
k Rk+1B̃k)

−1B̃T
k Rk+1, (5.152)

G3 = −(Rk + B̃T
k Rk+1B̃k)

−1B̃T
k . (5.153)

Rk+1 is the solution to the discrete time Riccati equation

Rk = D̃TQkD̃ + ÃT
kRk+1(Ã+ B̃G1), (5.154)

and the feed-forward signal hk+1 is given by the difference equation

hk = (Ã+ B̃G1)
Thk+1 − D̃TQkrk + ÃT

kRk+1(B̃kG2 + I)C̃rk. (5.155)
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The border conditions (final value conditions) at the final time k = N is given by

RN = D̃TSND̃, (5.156)

hN = −D̃TSNrN . (5.157)

△

An alternative suboptimal strategy to the one presented in Theorem 5.4.1 is to
use the solution to the discrete algebraic Riccati equation (DARE), i.e. with R =
Rk = Rk+1. The difference equation for computing the feed-forward signal hk is as
before and given by 5.155, but with Rk+1 = R, G1 and G2 are constant feedback
matrices. This strategy is in many cases to be preferred because it simplify the
solution considerably and the difference are in many cases minor.

One should also notice the alternative final value condition hN which with advantage
could be used in this case, i.e. the steady state solution to (5.155), i.e.,

G = −(RN + B̃T
NRB̃N )−1B̃T

NRÃN , (5.158)

hN = (I − (ÃN + B̃NG)T )−1(−D̃TQ+ ÃT
NR(B̃NG2 + I)C)rN . (5.159)

This final value condition ensures integral action and zero steady state error at the
final time.

It is of importance to illustrate the implementation of this strategy. In connection
to this we refer to the MATLAB script file main dlq rdu.m.

A modified version where we are using a mowing horizon control strategy as in Model
Predictive Control (MPC) is given in the file main dlq rdu2.m.

Example 5.3 (Weighting control deviations)
Given the system

xk+1 = Axk +Buk, (5.160)

yk = Dxk, (5.161)

where

A =

 1.5 1.0 0.10
−0.7 0 0.10

0 0 0.85

 , B =

 0 0
0 1
1 0

 , D =

[
3 0 −0.6
0 1 1

]
. (5.162)

We specify the following weighting matrices

Q =

[
0.03 0

0 0.03

]
, R =

[
1 0
0 1

]
. (5.163)

Solving the DARE gives

R =


1.5873 1.0940 −0.0290 −0.2046 0.3320
1.0940 0.9971 0.0963 −0.1657 0.4078

−0.0290 0.0963 0.1033 0.0623 0.1344
−0.2046 −0.1657 0.0623 0.3757 0.0140
0.3320 0.4078 0.1344 0.0140 0.7163

 , (5.164)

G =

[
0.2046 0.1657 −0.0623 −0.3757 −0.0140

−0.3320 −0.4078 −0.1344 −0.0140 −0.7163

]
. (5.165)
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This example is implemented in the MATLAB m-file main dlq rdu.m and main dlq rdu2.m.
Executing the files gives the results as illustrated in Figures 5.2 and 5.3.
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Figure 5.2: Simulation of the system in Example 10.1. this Figure is generated by
executing the MATLAB script-file main dlq rdu2.m.
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Figure 5.3: Simulation of the system in Example 10.1. this Figure is generated by
executing the MATLAB script-file main dlq rdu2.m.
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5.5 LQ control objective used in MPC

We will in this section study the solution to the LQ optimal control problem where
rk − yk, ∆uk and uk are weighted in the control objective. This objective is also
used by the EMPC algorithm.

Consider a discrete time linear process model

xk+1 = Akxk +Bkuk, (5.166)

yk = Dxk. (5.167)

and a performance index

Ji =
1

2
(rN − yN )TSN (rN − yN )

+
1

2

N−1∑
k=i

((rk − yk)
TQk(rk − yk) + ∆uTkRk∆uk + uTk Puk), (5.168)

where SN , Qk, Rk and Pk are weighting matrices. We will in the following use the
maximum principle in order to derive the optimal control.

5.5.1 Computing u∗
k

The Hamilton function is

Hk =
1

2
((rk − yk)

TQk(rk − yk) + (uk − uk−1)
TRk(uk − uk−1) + uTk Pkuk)

+ pTk+1((Ak − I)xk +Bkuk). (5.169)

The co-state

An equation for the co-state is

pk+1 − pk = −∂Hk

∂xk
= −(−DTQk(rk −Dxk) + (AT

k − I)pk+1) (5.170)

which gives

pk = DTQkDxk +AT
k pk+1 −DTQkrk (5.171)

The optimal control

∂Hk

∂uk
= Rk(uk − uk−1) + Pkuk +BT pk+1 = 0 (5.172)

which gives

(Rk + Pk)uk = Rkuk−1 −BT
k pk+1, (5.173)
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which can be solved for uk if the matrix Rk + Pk is non-singular. However, we will
in the following find an expression for uk in terms of variables which is defined at
time k only (not in terms of pk+1).

In order to continue we will assume that there are a relationship

pk = Rkxk + hk. (5.174)

Substituting (5.174) into (5.173) gives

(Rk + Pk)uk = Rkuk−1 −BT
k (Rk+1xk+1 + hk+1), (5.175)

Substituting for the state xk+1 given by (5.166) gives

(Rk + Pk)uk = Rkuk−1 −BT
k Rk+1(Akxk +Bkuk)−BT

k hk+1. (5.176)

Solving for uk gives

uk = G1xk +G3hk+1 +G4uk−1, (5.177)

where

G1 = −(Rk + Pk +BT
k Rk+1Bk)

−1BT
k Rk+1Ak (5.178)

G3 = −(Rk + Pk +BT
k Rk+1Bk)

−1BT
k (5.179)

G4 = −(Rk + Pk +BT
k Rk+1Bk)

−1Rk (5.180)

The closed loop system

Substituting the optimal control into the process model gives

xk+1 = (A+BG1)xk +BG3hk+1 +BG4uk−1 (5.181)

The Riccati equation and the feed-forward signal

Substituting (5.171) into (5.174) gives

DTQkDxk +AT
k pk+1 −DTQkrk = Rkxk + hk (5.182)

Using that pk+1 = Rk+1xk+1 + hk+1 gives

DTQkDxk +AT
kRk+1xk+1 +AT

k hk+1 −DTQkrk = Rkxk + hk (5.183)

Substituting (5.181) for (xk+1) gives

DTQkDxk +AT
kRk+1((Ak +BkG1)xk +BkG3hk+1 +BkG4uk−1)

+AT
k hk+1 −DTQkrk = Rkxk + hk, (5.184)

which can be rewritten as

[−Rk +AT
kRk+1(Ak +BkG1) +DTQkD]xk

−hk + (AT
k +AT

kR
T
k+1BkG3)hk+1 +AT

kRk+1BkG4uk−1 −DTQkrk = 0.(5.185)
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Equation (5.185) must hold for all xk so that

Rk = AT
kRk+1(Ak +BkG1) +DTQkD, (5.186)

hk = (AT
k +AT

kR
T
k+1BkG3)hk+1 +AT

kRk+1BkG4uk−1 −DTQkrk. (5.187)

Equation (5.186) is the well known discret time Riccati equation. Note that the
difference equation for the feed-forward signal can be expressed as

hk = (Ak +BkG1)
Thk+1 +AT

kRk+1BkG4uk−1 −DTQkrk. (5.188)

Final value conditions

We have similar conditions as in the standard tracking problem.

RN = DTSND (5.189)

hN = −DTSNrN (5.190)

5.5.2 Discussion

Equations (5.188) and (5.186) has to be iterated backwards from k = N − 1 to time
k = i. One problem is here that uk−1 in (5.188) is not known for k = i + 1, . . .,
k = N − 1. Hence, a question is how to solve the problem.
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5.6 Solution to the discrete algebraic Riccati equation
(DARE)

Consider a discrete infinite time LQ optimal control problem, i.e. find the op-
timal control uk for a system xk+1 = Axk + Buk with performance index Ji =∑∞

k=i(x
T
kQxk+uTk Puk) and where the pair (A,B) is stabilizable and where the pair

(
√
Q,A) is detectable.

From the maximum principle, i.e., ∂Hk
∂uk

= 0, xk+1−xk = ∂Hk
∂pk

and pk+1−pk = −∂Hk
∂xk

,
we have the two point boundary value problem

xk+1 = Axk −BP−1BT pk+1, (5.191)

pk = Qxk +AT pk+1, (5.192)

with initial state xi given and final co-state p∞ = 0. Equations (5.191) and (5.192)
can be written in matrix form as follows

F1︷ ︸︸ ︷[
I BP−1BT

0 AT

] [
xk+1

pk+1

]
=

F2︷ ︸︸ ︷[
A 0
−Q I

] [
xk
pk

]
. (5.193)

Consider now the generalized eigenvalue problem

|F1λ− F2| = 0, (5.194)

and the corresponding generalized eigenvalue and eigenvector problem

F1MΛ = F2M, (5.195)

where M is the matrix of generalized eigenvectors and where Λ is the matrix of
generalized eigenvalues. Equation (5.195) can be partitioned as follows

F1

[
M11 M12

M21 M22

] [
Λ11 0
0 Λ22

]
= F2

[
M11 M12

M21 M22

]
, (5.196)

where Λ11 is a diagonal matrix with the n stable generalized eigenvalues and Λ22

contains the n unstable generalized eigenvalues.

From this we have that

R = M21M
−1
11 = ATV21Λ11V

−1
11 +Q (5.197)

is a solution to the discrete ARE

R = ATR(I +BP−1BTR)−1A+Q. (5.198)

This can be proved by substituting (5.197) and the equations obtained from (5.196)
into the DARE (5.198). Similarly we can prove that the closed loop system is stable,
i.e. that the closed loop system contains the eigenvalues in Λ11.
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Proof 5.1 (Solution to the DARE)
From (5.196) we have that

(M11 +BP−1BTM21)Λ11 = AM11, (5.199)

ATM21Λ11 = −QM11 +M21. (5.200)

Equation (5.199) gives

A = (I +BP−1BTM21M
−1
11 )M11Λ11M

−1
11 . (5.201)

Using R = M21M
−1
11 and substituting into the DARE (5.198) gives

R = ATR(I +BP−1BTR)−1(I +BP−1BTM21M
−1
11 )M11Λ11M

−1
11 +Q

= ATRM11Λ11M
−1
11 +Q = ATM21Λ11M

−1
11 +Q (5.202)

Substituting (5.200) into (5.202) gives

R = (−QM11 +M21)M
−1
11 +Q = M21M

−1
11 . (5.203)

This proves that R = M21M
−1
11 is a solution to the DARE. QED.

Proof 5.2 (Stability of the closed loop system)
An expression for the closed loop system is given by (see Equation 4.25)

Acl = (I +BP−1BTR)−1A. (5.204)

Substituting for A given by (5.201) into (5.204) gives

Acl = M11Λ11M
−1
11 , (5.205)

which proves that the eigenvalues of the closed loop system is given by Λ11. QED.

The generalized eigenvalue/eigenvector problem can be solved in MATLAB by [M,Λ] =
eig(F2, F1). Note also that the Control Systems Toolbox function [−G,R] = dlqr(A,B,Q, P )
does not work when A is singular. However, the above method works for singular
transition matrices.

Example 5.4
Consider a system

xk+1 =

[
1 1
0 0

]
xk +

[
0
1

]
uk (5.206)

yk =
[
1 0

]
xk (5.207)

and the objective function

J0 =

∞∑
k=0

(yTk yk + uTk uk). (5.208)

The problem is to find a solution to the discrete ARE and the optimal feedback gain.
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First, note that we have weighting matrices Q = DTD =

[
1 0
0 0

]
and P = 1.

The matrices in the generalized eigenvalue and eigenvector problem are

F1 =

[
I BP−1BT

0 AT

]
=


1 0 0 0
0 1 0 1
0 0 1 0
0 0 1 0

 (5.209)

and

F2 =

[
A 0
−Q I

]
=


1 1 0 0
0 0 0 0
−1 0 1 0
0 0 0 1

 . (5.210)

The MATLAB command [M̃, Λ̃] = eig(F2, F1). gives

M̃ =

[
M12 M11

M22 M21

]
=


0 0.3887 −0.4777 0.5774

−0.7071 0.6290 0.2952 −0.5774
0 −0.2402 −0.7730 0.5774

0.7071 −0.6290 −0.2952 −0.0000

 (5.211)

and

Λ̃ =

[
Λ22 0
0 Λ11

]
=


−Inf +NaNi 0 0 0

0 2.6180 0 0
0 0 0.3820 0
0 0 0 0

 . (5.212)

Note that the three finite generalized eigenvalues λ2 = 2.618, λ3 = 0.382 and λ4 = 0
are the roots of the characteristic equation det(F1λ − F2) = (−λ2 + 3λ − 1)λ = 0.
This can be partitioned according to (5.196), i.e. with the stable eigenvalues first.
Hence, we have

M11 =

[
−0.4777 0.5774
0.2952 −0.5774

]
(5.213)

and

M21 =

[
−0.7730 0.5774
−0.2952 −0.0000

]
. (5.214)

This gives

R = M21M
−1
11 =

[
2.618 1.618
1.618 1.618

]
(5.215)

and the optimal feedback uk = Gxk with optimal gain matrix

G = −(P +BTRB)−1BTRA = −
[
0.618 0.618

]
. (5.216)
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Chapter 6

Discrete LQ optimal control:
Alternative direct solution

6.1 The objective function

Lemma 6.1 (Discrete Linear Quadratic Regulator)
Consider the standard LQ performance index or objective function

Ji =
1

2
xTNSNxN +

1

2

N−1∑
k=i

(xTkQkxk + uTk Pkuk), (6.1)

where SN , Qk and Pk are symmetric weighting matrices. i is the discrete initial
time instant and N the discrete final time instant.

The LQR optimal controller is given by

u∗k = Gkxk (6.2)

Gk = −(Pk +BTRk+1B)−1BTRk+1A (6.3)

where Rk is the non-negative solution, for al time instants i ≤ k ≤ N , of the Riccati
difference equation

Rk = AT (Rk+1 −Rk+1B(P +BTRk+1B)−1BTRk+1)A+Qk, (6.4)

RN = SN . (6.5)

The minimum of the objective eq. (6.1) is given by

J∗
i =

1

2
xTi Rixi. (6.6)

△

It is clear that the objective eq. (6.1) may be written as

Ji =
1

2

N−1∑
k=i

(xTk+1Qk+1xk+1 + uTk Pkuk) +
1

2
xTi Qixi (6.7)
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when QN = SN . The reason for separating the term 1
2x

T
i Qixi is that it can not be

influenced upon by the unknown control actions uk ∀ k = i, i+ 1, . . . , N − 1.

Putting the initial time i equal to the actual present time instant k, and noticing
that the objective functions (6.7) is defined at L = N − i+1 discrete time instants,
including the present time instant k = i, then we may write the objective eq. (6.7)
as

Jk =
1

2

L−1∑
i=1

(xTk+iQk+ixk+i + uTk+i−1Pk+i−1uk+i−1) +
1

2
xTkQkxk (6.8)

This objective function is usually used in connection with Model Predictive Control
(MPC) and the prediction horizon is here defined as L− 1. The objective functions
eqs. (6.7) - (6.8) are equal when L = N − i+ 1 and L− 1 = N − i.

Since the last term in (6.8) is not influenced by the unknown control actions we may
instead minimize the performance index

JMPC
k =

1

2

T∑
i=1

(xTk+iQk+ixk+i + uTk+i−1Pk+i−1uk+i−1) (6.9)

where here T = L− 1 = N − i is the prediction horizon.

6.2 Compact description

The objective function eq. (6.8) may be written compact as follows

Jk =
1

2
(xTk+1|LQk|Lxk+1|L + uTk|LPk|Luk|L) +

1

2
xTkQkxk. (6.10)

where we have redefined the prediction horizon as L := L − 1 for simplicity of
notation.

Using that xk|L = OLxk +HLuk|L−1 and the plant model xk+1 = Axk +Buk gives

xk+1|L = OLAxk + F d
Luk|L (6.11)

= pL + F d
Luk|L, (6.12)

where

F d
L =

[
OLB Hd

L

]
∈ RLn×Lr, (6.13)

pL = OLAxk. (6.14)

Here OL is the extended observability matrix for the matrix pair (D = In×n, A) and
Hd

L the Toeplitz matrix of the impulse response matrices E = 0, DB, DAB, . . . ,
DAL−2B (also with D = In timesn).

With these definitions we write the objective eq. (6.10) in terms of the unknown
controls uk|L as

Jk =
1

2
(uTk|LHuk|L + 2fT

L uk|L + J0) +
1

2
xTkQkxk, (6.15)
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where

H = Pk|L + F dT
L Qk|LF

d
L, (6.16)

fT
L = pTLQk|LF

d
L, (6.17)

J0 = pTLQk|LpL (6.18)

where F dT
L = (F d

L)
T

6.3 Optimal control and minimum objective

The optimal control u∗k|L minimizing the objective eq. (6.15) is given by

∂Jk
∂uk|L

=
1

2
(2Huk|L + 2fL) = 0 ⇒ u∗k|L = −H−1fL, (6.19)

where we have to ensure

∂2Jk
∂u2k|L

= H > 0, (6.20)

for a minimum.

The minimum of the objective function is then

J∗
k =

1

2
(fT

LH
−1fL − 2fT

LH
−1fL + J0) +

1

2
xTkQkxk, (6.21)

=
1

2
(−fT

LH
−1fL + J0) +

1

2
xTkQkxk (6.22)

=
1

2
(pTL(Qk|L −Qk|LF

d
LH

−1F dT
L Qk|L)pL +

1

2
xTkQkxk. (6.23)

The minimum of the objective can then be written as a function of the present state
xk and the solution of the Riccati equation Rk as

J∗
k =

1

2
xTkRkxk, (6.24)

where the solution to the Riccati equation is given by

Rk = (OLA)T (Qk|L −Qk|LF
d
LH

−1F dT
L Qk|L)OLA+Qk. (6.25)

Interestingly, using eq. (6.16) we write eq. (6.25) as

Rk = (OLA)
T (Qk|L −Qk|LF

d
L(Pk|L + F dT

L Qk|LF
d
L)

−1F dT
L Qk|L)OLA+Qk,(6.26)

QL|L = SN , (6.27)

and comparing with the Riccati difference equation, we find strong similarities. The
Riccati difference equation (6.4) may be replaced with a analytic matrix equation
as in (6.26). The Riccati difference equation and the matrix eq. (6.26) are dual
equations, meaning that if we replace the matrices in (6.4) with A := OLA, B := F d

L,
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Rk+1 := Qk|L and Pk := Pk|L we obtain the analytic matrix expression (6.26) for
Rk.

Notice that the Riccati matrix Rk is equal to the steady state solution R of the
Discrete Algebraic Riccati Equation (DARE) when the prediction horizon L is large.
However, if the last lower left block in Qk|L, is chosen equal to R then Rk = R for any
finite prediction horizon 1 < L, and hence the optimal control (6.19) is stabilizing.

Let us now study the future controlled responses. We write the predicted control
actions as follows

u∗k|L = −H−1fL = −H−1F dT
L Qk|LpL = GLxk, (6.28)

where we have defined the gain matrix

GL = −H−1F dT
L Qk|LOLA. (6.29)

Substituting the optimal control into (6.12) gives the predicted controlled state
responses

xk+1|L = OLAxk + F d
Lu

∗
k|L

= (OLA+ F d
LGL)xk (6.30)

From this we may also deduce the following alternative formulation of the Riccati
matrix

Rk = GT
LHGL + 2(OLA)

TQk|LF
d
LGL + (OLA)TQk|LOLA+Qk. (6.31)



Chapter 7

Discrete LQ optimal control:
Alternative direct solution

7.1 Innledning

Vi har i avsnitt 5.2 vist at løsningen av det diskrete optimal reguleringsproblemet
best̊ar av en Riccati-ligning. Dette betyr at for å finne de optimale p̊adrag m̊a vi
løse den diskrete Riccati-ligningen.

Vi skal i dette avsnittet vise at man ikke trenger å løse den diskrete Riccati ligningen
som vist i avsnitt 5.2 for å finne den optimale løsningen. Dette resultatet er meget
viktig fordi det blant annet viser sammenheng mellom klassisk LQ/LQG regulering
og modell prediktiv regulering (MPC). I denne sammenheng er det av interesse å
diskutere det diskrete LQ kriteriet.

7.2 Diskusjon av det diskrete LQ kriteriet

Dersom man skal sammenligne klassisk LQ regulering og s̊akallt modell prediktiv
regulering er det en god ide å starte med å se p̊a optimal kriteriet som benyttes.

La oss studere det diskrete optimal kriteriet

Ji =
1

2
xTNSNxN +

1

2

N−1∑
k=i

(xTkQkxk + uTk Pkuk), (7.1)

der SN , Qk og Pk er symmetriske vekt-matriser. i er det diskrete start-tidspunktet
og N er det diskrete slutt-tidspunktet.

Vi tar utganhspunkt i denne formuleringen av et LQ kriterium fordi det er en
forholdsvis generell formulering. Kriteriet (7.1) er dessuten identisk med det som
benyttes i Lewis og Syrmos (1995) og Söderström (1994). Dette kan refereres til
som det klassiske diskrete LQ kriteriet.

Dersom start-tidspunktet er k = i og slutt-tidspunktet er k = N vil kriteriet Ji være
avhengig av p̊adragsvektoren vedN−i diskrete tidspunkt, dvs., uk ∀ k = i, · · · , N−i.
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Vi forutsetter at N > i. Kriteriet er imidlertid avhengig av tilstandsvektoren xk ved
N − i+ 1 diskrete tidspunkter. Merk ogs̊a at det ikke er mulig å p̊avirke tilstanden
xi ved hjelp av noen av p̊adragene som inng̊ar i kriteriet. Grunnen til dette er at
p̊adraget uk bare p̊avirker tilstanden ved neste tidspunkt, dvs., xk+1. LQ kriteriet
(7.1) kan derfor splittes opp i en sum av to deler. En del som er avhengig av
p̊adragssekvensen og en del som er uavhengig av p̊adragene. Vi har

Ji =
1

2

N−1∑
k=i

(xTk+1Qk+1xk+1 + uTk Pkuk) +
1

2
xTi Qixi (7.2)

Denne formuleringen av LQ kriteriet er identisk med (7.1) dersom QN = SN . Det er
klart at det bare er det første leddet p̊a høyre side som kan p̊avirkes av p̊adragene.

LQ kriteriene (7.1) og (7.2) er videre definert over en tidshorisont p̊a L = N − i+1
diskrete tidspunkt. Merk ogs̊a at dersom tidshorisonten L og start-tidspunkt i er
gitt m̊a vi ha at slutt-tidspunktet er gitt ved N = L − 1 + i. Setter vi dette inn i
LQ kriteriet (7.1) f̊ar vi

Ji =
1

2
xTL−1+iSL−1+ixL−1+i +

1

2

L−1+i−1∑
k=i

(xTkQkxk + uTk Pkuk) (7.3)

Dette kriteriet er vel definert dersom horisonten L og initial-tidspunktet i er spesi-
fiserte. Setter vi N = L− 1 + i inn i LQ kriteriet (7.2) f̊ar vi

Ji =
1

2

L−1+i−1∑
k=i

(xTk+1Qk+1xk+1 + uTk Pkuk) +
1

2
xTi Qixi (7.4)

Dersom L > 0 er en konstant vil den første delen av kriteriet være definert over en
konstant horisont p̊a L− 1 diskrete tidspunkter uavhengig av initial-tidspunktet i.

Merknad 7.1 De fire formuleringene av LQ kriteriet gitt ved (7.1), (7.2), (7.3) og
(7.4) er identiske dersom initial-tidspunktet i og slutt-tidspunktet N er spesifisert.
Vi forutsetter at QN = SN i ligning (7.2) og at QN = SN og L = N − i+ 1 i (7.4).

Merknad 7.2 Formuleringen i (7.2) viser at vi kan separere ut kvadrat formen
1
2x

T
i Qixi fra det klassiske LQ kriteriet (7.1). Ingen av p̊adragene som inng̊ar i

kriteriet har innvirkning p̊a denne kvadrat-formen. Vi forutsetter her at systemet
er strengt-proper. Dette betyr at det er mulig å finne de optimale p̊adragene ved å
finne minimum av det første leddet p̊a venstre side av (7.2).

Et viktig spesialtilfelle f̊ar vi n̊a ved å velge i lik løpende tid. Formuleringene gitt ved
(7.3) og (7.4) av LQ kriteriet (7.1) refereres da til som receding horizon LQ kriterier.
Et LQ kriterium av denne typen gir opphav til et nytt optimaliseringsproblem for
hvert nytt tidspunkt.

Vi merker oss i denne sammenheng at LQ kriteriet (7.3) kan skrives som

Jk = 1
2x

T
k+L−1Sk+L−1xk+L−1

1
2

∑L−1
i=1 (x

T
k+i−1Qk+i−1xk+i−1 + uTk+i−1Pk+i−1uk+i−1) (7.5)
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der k er løpende diskret tid. P̊a samme m̊ate kan LQ kriteriet (7.4) skrives slik

Jk =
1

2

L−1∑
i=1

(xTk+iQk+ixk+i + uTk+i−1Pk+i−1uk+i−1) +
1

2
xTkQkxk (7.6)

LQ kriterier som vist i de to siste ligningene benyttes i stor grad i forbindelse med
MPC.

Merknad 7.3 (receding-horizon control) Dersom vi for hvert nytt diskrete tid-
spunkt k minimaliserer et LQ kriterium av typen (7.5) eller(7.6) med hensyn til
p̊adragene uk, uk+1,. . . , uk+L−2 og bare benytter det første p̊adraget uk til å regulere
prosessen s̊a refereres dette til som receding-horizon control. Dette refereres i lit-
teraturen ogs̊a til som Model Predictive Control (MPC) og Moving Horizon Control
(MHC).

7.3 Diskret optimal regulering: Alternativ løsning I

La oss fortsette diskusjonen med to eksempler.

Example 7.1 (kompakt formulering av optimal kriteriet)
Gitt en tidshorisont L = 4. Vi spesifiserer start-tidspunktet til i = 0. Dette betyr
at slutt-tiden er N = L + i − 1 = 3. Vi definerer et kvadratisk optimal kriterium
over tidshorisonten

J0 =
1

2
xT3 S3x3 +

1

2

2∑
k=0

(xTkQkxk + uTk Pkuk) (7.7)

Poenget med dette eksemplet er å vise at kriteriet kan skrives p̊a matriseform. Vi
har

J0 =
1

2
(xT0|4Q0|4x0|4 + uT0|3P0|3u0|3) (7.8)

der

x0|4 =


x0
x1
x2
x3

 , u0|3 =

 u0
u1
u2

 . (7.9)

og

Q0|4 =


Q0 0 0 0
0 Q1 0 0
0 0 Q2 0
0 0 0 S3

 , P0|3 =

P0 0 0
0 P1 0
0 0 P2

 . (7.10)

Det er en fin øving å vise dette !
△
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Example 7.2 (Utvidet tilstandsrommodell)
La oss studere kriteriet (7.8). Det er av interesse å uttrykke x0|4 ved hjelp av
p̊adragsvektoren u0|3. Kriteriet kan da uttrykkes som en funksjon av u0|3. Vi kan
dermed finne den optimale p̊adragsvektoren u0|3 ved å sette den deriverte av kriteriet
mht. p̊adragsvektoren lik null.

Vi skal n̊a vise at en slik sammenheng eksisterer. Med utgangspunkt i tilstandsrom-
modellen finner vi

x0|4︷ ︸︸ ︷
x0
x1
x2
x3

 =

O4︷ ︸︸ ︷
I
A
A2

A3

x0 +

H2
4︷ ︸︸ ︷

0 0 0
B 0 0
AB B 0
A2B AB B


u0|3︷ ︸︸ ︷ u0
u1
u2

 . (7.11)

Vi har funnet sammenhengen

x0|4 = O4x0 +Hd
4u0|3. (7.12)

Merk at matrisen O4 er en (utvidet) observerbarhetsmatrise for matriseparet (D,A)
der D = I.

Dersom vi setter sammenhengen (7.12) inn i kriteriet s̊a vil kriteriet bare avhenge
av u0|3 og x0. x0 er uavhengig av u0|3. Den optimale p̊adragsvektoren kan dermed
finnes ved å sette den deriverte av J0 med hensyn til u0|3 lik null.
△

Det kan vises at det diskrete optimal kriteriet (7.1) generelt kan skrives p̊a den
kompakte matriseformen

Ji =
1

2
(xTi|LQi|Lxi|L + uTi|L−1Pi|L−1ui|L−1), (7.13)

der

xi|L =


xi
xi+1
...
xL+i−2

xL+i−1

 , ui|L−1 =


ui
ui+1
...
uL+i−2

 . (7.14)

Videre har vi den utvidede tilstandsrommodellen

xi|L = OLxi +Hd
Lui|L−1. (7.15)

Setter vi (7.15) inn i kriteriet (7.13) f̊ar vi at

Ji =
1

2
[(OLxi +Hd

Lui|L−1)
TQi|L(OLxi +Hd

Lui|L−1) + uTi|L−1Pi|L−1ui|L−1].(7.16)

Vi finner

∂Ji
∂ui|L−1

= HdT
L Qi|LOLxi + (HdT

L Qi|LH
d
L + Pi|L−1)ui|L−1. (7.17)
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Vi setter den deriverte lik null og finner følgende uttrykk for den optimale p̊adragsvektoren

ui|L−1 = GpL, (7.18)

der

G = −(HdT
L Qi|LH

d
L + Pi|L−1)

−1HdT
L Qi|L, (7.19)

pL = OLxi. (7.20)

Legg merke til at pL representerer tilstandsrommodellens autonome responser ved
de diskrete tidspunktene i, i+ 1, i+ 2, · · · , L+ i− 1. Dvs. pL inneholder løsningene
av tilstandsrommodellen xk+1 = Axk der initial tilstandsvektoren xi er gitt. Første
blokk i pL er identisk med xi. Det kan vises at første blokk kolonne i GL er lik
null. Grunnen til dette er at de optimale p̊adragene i ui|L−1 ikke er avhengig av
initial-tilstandsvektoren xi. Vi skal i neste avsnitt vise hvordan vi, ved å ta hensyn
til dette, kan utlede en alternativ formulering av resultatet i (7.18)-(7.20)

Minimumsverdien av kriteriet blir

J∗
i =

1

2
xTi O

T
L [(I +Hd

LG)TQi|L(I +Hd
LG) +GTPi|L−1G]OLxi. (7.21)

Sammenligner vi dette med den løsningen som er presentert i avsnitt 5.2 s̊a finner vi
følgende uttrykk for løsningen av den diskrete Riccati-ligningen ved start-tidspunktet
k = i.

Ri = OT
L [(I +Hd

LG)TQi|L(I +Hd
LG) +GTPi|L−1G]OL. (7.22)

Dersom tidshorisonten L er stor vil (7.22) konvergere mot den stasjonære løsningen
av den diskrete algebraiske Riccati-ligningen. Dette betyr at vi har funnet en al-
ternativ løsningsmetode for det diskrete LQ optimal reguleringsproblemet. Vi har
dessuten funnet en alternativ metode for å løse den diskrete Riccati-ligningen p̊a .

La oss studere det lukkede systemets responser. Vi setter det optimale p̊adraget gitt
ved (7.18)-(7.20) inn i den utvidede tilstandsrom-modellen (7.15) og f̊ar

xi|L = (I + F d
LG)OLxi. (7.23)

Det er klart at denne ligningen kan benyttes til å studere stabilitets egenskapene til
det lukkede systemet.

Stabilitet er ikke nødvendigvis relevant i forbindelse med optimaliseringsproblemer
der vi benytter et endelig optimaliseringsintervall i ≤ k ≤ N . I batch prosess reguler-
ingsproblemer og minimum-tid reguleringsproblemer er det normalt ikke nødvendig
å kreve stabilitet, dvs. en analyse av systemet n̊ar t → ∞ har ingen mening. Der-
som vi imidlertid krever stabilitet vil det i enkelte tilfeller være lurt å vektlegge
slutt-tilstanden.

7.4 Diskret optimal regulering: Alternativ løsning II

Vi skal i dette avsnittet vise at resultatene som ble funnet i avsnitt 5.2 kan uttrykkes
p̊a en noe enklere m̊ate. Det kan vises at det diskrete optimal kriteriet (7.13) kan



124 Discrete LQ optimal control: Alternative direct solution

splittes i to deler.

Ji =
1

2
(xTi+1|L−1Qi+1|L−1xi+1|L−1 + uTi|L−1Pi|L−1ui|L−1) +

1

2
xTi Qixi. (7.24)

Grunnen til at vi har splittet opp kriteriet er at den utvidede p̊adragsvektoren ui|L−1

bare kan p̊avirke den utvidede tilstandsvektoren xi+1|L−1. Grunnen til dette er at
uk bare p̊avirker tilstanden ved neste tidspunkt, dvs., xk+1. Dvs., ui|L−1 kan ikke
p̊avirke tilstandsvektoren xi ved start-tidspunktet.

Dersom vi tar utgangspunkt i formuleringen av kriteriet som gitt i (7.24) finner vi en
annen formulering av løsningen en den som ble utledet i avsnitt (7.3). Løsningene
er imidlertid identiske.

Tilsvarende (7.15) finner vi følgende formulering

xi+1|L−1 = OL−1Axi + F d
L−1ui|L−1, (7.25)

der

F d
L−1 =

[
OL−1B Hd

L−1

]
∈ R(L−1)n×(L−1)r. (7.26)

Vi vil referere til (7.25) som en utvidet tilstandsrommodell. Vi setter n̊a ligning
(7.25) inn i kriteriet (7.24) og f̊ar.

Ji =
1
2 [(OL−1Axi + F d

L−1ui|L−1)
TQi+1|L−1(OL−1Axi + F d

L−1ui|L−1)

+uTi|L−1Pi|L−1ui|L−1] +
1
2x

T
i Qixi. (7.27)

Kriteriet kan skrives slik

Ji =
1
2u

T
i|L−1(Pi|L−1 + F dT

L−1Qi+1|L−1F
d
L−1)ui|L−1 + (OL−1Axi)

TQi+1|L−1F
d
L−1ui|L−1

+1
2x

T
i [(OL−1A)TQi+1|L−1OL−1A+Qi]xi. (7.28)

Vi kan finne en betingelse for minimum ved å derivere Ji med hensyn p̊a ui|L−1.
Derivasjon gir

∂Ji
∂ui|L−1

= F dT
L−1Qi+1|L−1OL−1Axi + (F dT

L−1Qi+1|L−1F
d
L−1 + Pi|L−1)ui|L−1.(7.29)

Vi setter ligning (7.29) lik null og f̊ar

ui|L−1 = GL−1pL−1, (7.30)

der vi definerer

GL−1 = −(F dT
L−1Qi+1|L−1F

d
L−1 + Pi|L−1)

−1F dT
L−1Qi+1|L−1, (7.31)

pL−1 = OL−1Axi. (7.32)

Legg merke til at pL−1 inneholder det åpne systemets autonome responser ved tid-
spunktene i+1, i+2, · · · , L+ i− 1. Vi har her utledet en litt annen formulering en
den presentert i (7.18)-(7.20).
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For at løsningen (7.30)-(7.32) garantert skal være den optimale løsningen som gir
minimum av kriteriet ma den Hessiske matrisen være positiv definit. Dvs., vi har
følgende krav

∂2Ji
∂u2i|L−1

= (F dT
L−1Qi+1|L−1F

d
L−1 + Pi|L−1) > 0. (7.33)

Dette vil alltid være oppfyllt dersom vi for eksempel velger Pk > 0 ∀ k = i, · · · , L+
i − 2. Dvs. dersom vi velger positiv definite vektmatriser for p̊adragsvektoren ved
alle diskrete tidspunkt.

La oss studere det lukkede systemets responser. Vi setter det optimale p̊adraget gitt
ved (7.30)-(7.32) inn i den utvidede tilstandsrom-modellen (7.25) og f̊ar

xi+1|L−1 = (OL−1A+ F d
L−1GL−1OL−1A)xi. (7.34)

Det er klart at denne ligningen kan benyttes til å studere stabilitets egenskapene til
det lukkede systemet.

La oss finne minimumsverdien til kriteriet. Vi setter den optimale p̊adragsvektoren
(7.30) inn i kriteriet (7.27) og finner

J∗
i = 1

2x
T
i (OL−1A)T [(I + F d

L−1GL−1)
TQi+1|L−1(I + F d

L−1GL−1)

+GT
L−1Pi|L−1GL−1]OL−1Axi +

1
2x

T
i Qixi . (7.35)

Med utgangspunkt i maksimumsprinsippet kan vi vise at minimumsverdien av kri-
teriet er gitt ved J∗

i = 1
2x

T
i Rixi der Ri er løsning av den diskrete Riccati-ligningen.

Dette betyr at løsningen av den diskrete Riccati-ligningen, ved tiden i, er gitt ved

Ri = (OL−1A)
T [(I + F d

L−1GL−1)
TQi+1|L−1(I + F d

L−1GL−1) +GT
L−1Pi|L−1GL−1]OL−1A

+ Qi. (7.36)

Dette resultatet er viktig fordi det viser at det finnes en “analytisk” løsning av den
diskrete Riccati-ligningen.

En alternativ formulering finner vi ved å sette den optimale p̊adragsvektoren (7.30)
inn i kriteriet (7.28). Dette gir

Ri = −ZTHZ + (Oi+1|L−1A)TQi+1|L−1Oi+1|L−1A+Qi, (7.37)

der

Z = F dT
L−1Qi+1|L−1OL−1A, (7.38)

H = (Pi|L−1 + F dT
L−1Qi+1|L−1F

d
L−1)

−1. (7.39)

Merknad 7.4 Veklegging av slutt-tilstanden er viktig for stabilitet i forbindelse med
endelig horisont LQ regulering.

Dersom den stasjonære løsningen av Riccati ligningen skal finnes ved hjelp av form-
lene gitt over kan det være hensiktsmessig med en tilstrekkelig vekting av slutt-
tilstanden. Slutt-tilstanden vektlegges med matrisen SN

Merk at dersom vi vekter slutt-tilstanden med SN = R der R er den stasjonære
løsningen av Riccati ligningen vil det lukkede systemet være stabilt selv om vi velger
en endelig horisont p̊a kriteriet. Se ogs̊a oppgave ??.
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Chapter 8

Time delay in optimal systems

8.1 Modeling of time delay

We will in this section discuss systems with possibly time delay. Assume that the
system without time delay is given by a proper state space model as follows

xk+1 = Axk +Buk, (8.1)

y−k = Dxk + Euk, (8.2)

and that the output of the system, yk, is identical to, y−k , but delayed a delay τ
samples. The time delay may then be exact expressed as

yk+τ = y−k . (8.3)

Discrete time systems with time delay may be modeled by including a number of
fictive dummy states for describing the time delay. Some alternative methods are
described in the following.

8.1.1 Transport delay and controllability canonical form

Formulation 1: State space model for time delay

We will include a positive integer number τ fictive dummy state vectors of dimension
m in order for describing the time delay, i.e.,

x1k+1 = Dxk + Euk
x2k+1 = x1k

...

xτk+1 = xτ−1
k

 (8.4)

The output of the process is then given by

yk = xτk (8.5)

We se by comparing the defined equations (8.4) and (8.5) is an identical description
as the original state space model given by (8.1), (8.2 and (8.3). Note that we in
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(8.4) have defined a number τm fictive dummy state variables for describing the
time delay.

Augmenting the model (8.1) and (8.2) with the state space model for the delay gives
a complete model for the system with delay.

x̃k+1︷ ︸︸ ︷
x
x1

x2

...
xτ


k+1

=

Ã︷ ︸︸ ︷
A 0 0 · · · 0 0
D 0 0 · · · 0 0
0 I 0 · · · 0 0
...

...
...
. . .

...
...

0 0 0 · · · I 0



x̃k︷ ︸︸ ︷
x
x1

x2

...
xτ


k

+

B̃︷ ︸︸ ︷
B
E
0
...
0

uk (8.6)

yk =

D̃︷ ︸︸ ︷[
0 0 0 · · · 0 I

]
x̃k︷ ︸︸ ︷

x
x1

x2

...
xτ−1

xτ


k

(8.7)

hence we have

x̃k+1 = Ãx̃k + B̃uk (8.8)

yk = D̃x̃k (8.9)

where the state vector x̃k ∈ Rn+τm contains n states for the process (8.1) without
delay and a number τm states for describing the time delay (8.3).

With the basis in this state space model, Equations (8.8) and (8.9), we may use all
our theory for analyse and design of linear dynamic control systems.

Formulation 2: State space model for time delay

The formulation of the time delay in Equations (8.6) and (8.7) is not very com-
pacter. We will in this section present a different more compact formulation. In
some circumstances the model from y−k to yk will be of interest in itself. We start
by isolating this model. Consider the following state space model where yk− ∈ Rm

s delayed an integer number τ time instants.

xτ
k+1︷ ︸︸ ︷

x1

x2

x3

...
xτ


k+1

=

Aτ︷ ︸︸ ︷
0 0 0 · · · 0 0
I 0 0 · · · 0 0
0 I 0 · · · 0 0
...
...
...
. . .

...
...

0 0 0 · · · I 0



xτ
k︷ ︸︸ ︷

x1

x2

x3

...
xτ


k

+

Bτ︷ ︸︸ ︷
I
0
0
...
0

 y−k (8.10)
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yk =

Dτ︷ ︸︸ ︷[
0 0 0 · · · 0 I

]
xτ
k︷ ︸︸ ︷

x
x1

x2

...
xτ−1

xτ


k

(8.11)

which may be written as

xτk+1 = Aτxτk +Bτy−k (8.12)

yk = Dτxτk (8.13)

where xτk ∈ Rτm. the initial state for the delay state is put to xτ0 = 0. Note here
that the state space model (8.10) and (8.11) is on so called controllability canonical
form.

Combining (8.12) and (8.13) with the state space model equations (8.1) and (8.2),
gives an compact model for the entire system, i.e., the system without delay from
uk to y−k , and for the delay from y−k to the output yk.

x̃k︷ ︸︸ ︷[
x
xτ

]
k+1

=

Ã︷ ︸︸ ︷[
A 0
BτD Aτ

] x̃k︷ ︸︸ ︷[
x
xτ

]
k

+

B̃︷ ︸︸ ︷[
B
BτE

]
uk (8.14)

yk =

D̃︷ ︸︸ ︷[
0 Dτ

] x̃k︷ ︸︸ ︷[
x
xτ

]
k

(8.15)

Note that the state space model given by Equations (8.14) and (8.15), is identical
with the state space model in (8.6) and (8.7).

8.1.2 Time delay and observability canonical form

A simple method for modeling the time delay may be obtained by directly taking
Equation (8.3) as the starting point. Combining yk+τ = y−k with a number τ − 1
fictive dummy states, yk+1 = yk+1, · · ·, yk+τ−1 = yk+τ−1 we may write down the
following state space model

xτ
k+1︷ ︸︸ ︷

yk+1

yk+2

yk+3
...
yk+τ

 =

Aτ︷ ︸︸ ︷
0 I 0 · · · 0 0
0 0 I · · · 0 0
...
...
...
. . .

...
...

0 0 0 · · · 0 I
0 0 0 · · · 0 0



xτ
k︷ ︸︸ ︷

yk
yk+1

yk+2
...
yk+τ−1

+

Bτ︷ ︸︸ ︷
0
0
...
0
I

 y−k (8.16)



130 Time delay in optimal systems

yk =

Dτ︷ ︸︸ ︷[
I 0 0 · · · 0

]
xτ
k︷ ︸︸ ︷

yk
yk+1

yk+2
...
yk+τ−1

 (8.17)

where xτk ∈ Rτm.

The initial state for the time delay is put to xτ0 = 0. Note that the state space model
(8.16) and (8.17) is on observability canonical form.

8.2 Implementation of time delay

The state space model for the delay contains a huge number of zeroes and ones when
the time delay is large, ie when the delay state space model dimension mτ is large.

In the continuous time we have that a delay is described exact by yk+τ = y−k . It
can be shown that instead of simulating the state space model for the delay we can
obtain the same by using a matrix (array or shift register) of size nτ ×m where we
use nτ = τ as an integer number of delay samples.

The above state space model for the delay contains nτ = τ state equations which
may be expressed as

x1k = y−k−1

x2k = x1k−1
...

xτ−1
k = xτ−2

k−1

yk = xτ−1
k−1

(8.18)

where we have used yk = xτk. This may be implemented efficiently by using a matrix
(or vector x. The following algorithm (or variants of it) may be used:

Algorithm 8.2.1 (Implementing time delay of a signal)
Given a vector y−k ∈ Rm. A time delay of the elements in the vector y−k of nτ time
instants (samples) may simply be implemented by using a matrix x of size nτ ×m.

At each sample, k, (each call of the algorithm) do the following:

1. Put y−k in the first row (at the top) of the matrix x.

2. Interchange each row (elements) in matrix one position down in the matrix.

3. The delayed output yk is taken from the bottom element (last row) in the matrix
x.
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yk = x(τ, 1 : m)T

for i = τ : −1 : 2
x(i, 1 : m) = x(i− 1, 1 : m)

end
x(1, 1 : m) = (y−k )

T

Note that this algorithm should be evaluated at each time instant k.
△

8.3 Optimal regulering av systemer med transportforsinkelse

8.3.1 Løsning ved å modellere transportforsinkelsen

Transisjonsmatrisen Ã til systemet med transportforsinkelse er singulær. Grunnen
til dette er at transportforsinkelsesmodellen inkluderer τm egenverdier i origo. Der-
som vi studerer den optimale løsningen vil vi ogs̊a finne at transisjonsmatrisen til
det lukkede systemet er singulær. Vi skal se at det lukkede systemet uansett valg
av vektmatriser vil ha m egenverdier i origo.

Den optimale tilbakekoplingsmatrisen er gitt av

Gk = −(P + B̃TRk+1B̃)−1B̃TRk+1Ã (8.19)

Dersom vi benytter formuleringen (8.6 kan vi uttrykke Ã som

Ã =

[
A11 0n+(τ−1)m×m

A12 0m×m

]
(8.20)

Vi f̊ar dermed at Gk beregnes som

Gk =

−(P+B̃TRk+1B̃)−1B̃TRk+1︷ ︸︸ ︷[
× ×

] Ã︷ ︸︸ ︷[
A11 0n+(τ−1)m×m

A12 0m×m

]
=

[
G1 0m×m

]
(8.21)

der G1 ∈ Rr×n+(τ−1) og der × betyr at denne matriseblokken generelt er forskjellig
fra null.

Dette betyr at den optimale løsningen best̊ar av en tilbakekopling fra tilstandsvek-
toren xk samt en tilbakekopling fra de (τ − 1)m første kunstige tilstandene som
beskriver transportforsinkelsen. De siste m tilstandene i den kunstige tilstandsvek-
toren xτk benytes alts̊a ikke til å beregne den optimale tilbakekoplingen. Vi har
fra definisjonen at xτk = yk. Dette betyr at det optimale p̊adraget uk er direkte
uavhengig av yk.

8.3.2 Løsning ved å modifisere LQ kriteriet

Anta en prosess

xk+1 = Axk +Buk (8.22)
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der utgangen til systemet er forsinket et helt antall τ sampler slik at

yk+τ = Dxk (8.23)

Dersom vi ikke vektlegger tilstandene som beskriver transportforsinkelsene vil vi f̊a
et (modifisert) LQ kriterium av formen

Jk =

L∑
i=1

(yTk+i−1+τQ
1
k+i−1yk+i−1+τ + uTk+i−1Pk+i−1uk+i−1) (8.24)

som ogs̊a kan splittes opp i to deler slik

Jk =
L∑
i=1

(yTk+i+τQ
1
k+iyk+i+τ + uTk+i−1Pk+i−1uk+i−1) + yTk+τQ

1
kyk+τ (8.25)

Det er bare første ledd p̊a høyre side av LQ kriteriet som p̊avirkes av p̊adragene over
prediksjonshorisonten.

Det vil her være rimelig at dersom man ikke vektlegger tilstandene som beskriver
transportforsinkelsen s̊a vil det optimale p̊adraget være generert av uk = Gkxk.

8.4 Numeriske eksempler

Example 8.1 (Optimalt system med transportforsinkelse)
Gitt et diskret 1. ordens system

xk+1 = Axk +Buk (8.26)

y−k = Dxk + Euk (8.27)

der A = 0.9, B = 0.5, D = 1 og E = −1. Vi antar at det er en transportforsinkelse
p̊a τ = 1 sample før utgangen yk er tilgjengelig, dvs.

yk+1 = y−k (8.28)

Vi f̊ar følgende tilstandsrommodell for totalsystemet

[
xk+1

yk+1

]
=

Ã︷ ︸︸ ︷[
A 0
D 0

] [
xk
yk

]
+

B̃︷ ︸︸ ︷[
B
E

]
uk (8.29)

yk =
[
0 1

] [ xk
yk

]
(8.30)

Legg merke til at modellen (8.27) er bare proper, dvs. modellen inneholder en direkte
innvirkning fra uk til yk− mens modellen (8.30) er strengt proper, dvs. ingen direkte
innvirkning fra uk til utgangen.

Vi velger følgende glidende LQ kriterium

Jk =

L∑
i=1

(
[
xk+i−1 yk+i−1

] Q̃︷ ︸︸ ︷[
Q 0
D Q1

] [
xk+i−1

yk+i−1

]
+ Pu2k+i−1) (8.31)
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med følgende vekter og tidshorisont

Q = 10, Q1 = 10, P = 1, L = 15. (8.32)

Dette gir

Gk =
[
−0.610 0

]
, Rk =

[
56.183 0

0 10

]
, uk = −0.61xk (8.33)

Vi ser at det optimale p̊adraget bare beregnes p̊a bakgrunn av tilstanden xk i sys-
temet. Det kan vises at den optimale tilbakekoplingen er uavhengig av den kun-
stige tilstanden x1k = yk for alle valg av vektmatriser Q̃ (vi forutsetter at A, Q̃ er
detekterbar). Dette kan vi for eksempel se ved å multiplisere ut uttrykket Gk =
−(P + B̃TRk+1B̃)−1B̃TRk+1Ã.

Vi har i dette eksemplet løst Riccati-ligningen ved å benyttet ligningene (5.52) og
(5.53) ved å iterere bakover i tid fra slutt-tiden. Legg merke til at R og G er tids-
invariante og at de bare varierer med horisonten L.

Dersom L → ∞ (eller L er stor) f̊ar vi at R er løsningen av den diskrete algebraiske
Riccati-ligningen (DARE). Ligningene (5.52) og (5.53) kan med fordel benyttes til
å løse DARE. Det er her viktig og merke seg at MATLAB Control System Toolbox
funksjonen dlqr.m ikke virker p̊a dette systemet, dvs. dlqr.m klarer ikke å løse DARE.
Grunnen til dette er at Ã er singulær for dette eksemplet. dlqr.m kan ikke benyttes p̊a
systemer der transisjonsmatrisen er singulær. dlqr.m kan modifiseres ved å benytte
en generalisert egenverdimetode presentert i Pappas og Laub (1980).



134 Time delay in optimal systems



Chapter 9

Examples on continuous time
LQ optimal control

9.1 Examples: continuous time LQ-optimal control

Example 9.1 (LQ controller for distillation column)
A distillation column with one stage and re-boiler and accumulator can be modeled
as

ẋ1 =
1

M1
(L2x2 − L1x1 − V y1), (9.1)

ẋ2 =
1

M2
(Rx3 + FxF + V y1 − L2x2 − V y2), (9.2)

ẋ3 =
1

M3
(V y2 − V x3), (9.3)

where x1 is the composition in the re-boiler, x2 is the composition in the column
and x3 is the top-product composition. The flow-rate of bottom product, L1, and the
flow-rate from the column, L2, are given by

L1 = R+ F − V, (9.4)

L2 = R+ F, (9.5)

where R is the reflux (control input), V is the steam flow-rate from the re-boiler
(control input) and F is the feed flow-rate. xF is the feed composition. M1 is the
liquid in the reboiler, M2 is the liquid holdup in the column and M3 is the liquid in
the accumulator.

The composition in the steam from the re-boiler, y1, and from the column, y2, are
given by

y1 =
αx1

1 + (α− 1)x1
, (9.6)

y2 =
αx2

1 + (α− 1)x2
. (9.7)

This gives a non-linear model of the form

ẋ = f(x, u, v), (9.8)
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i.e.,

ẋ1 =
1

M1
((R+ F )x2 − (R+ F − V )x1 − V

αx1
1 + (α− 1)x1

), (9.9)

ẋ2 =
1

M2
(Rx3 + FxF + V

αx1
1 + (α− 1)x1

− L2x2 − V
αx2

1 + (α− 1)x2
), (9.10)

ẋ3 =
1

M3
(V

αx2
1 + (α− 1)x2

− V x3), (9.11)

where the parameters in the model are M1 = 10, M2 = 5, M3 = 10, and the relative
volatility α = 22.4. The control input vector, u, and the disturbance vector, v, with
nominal values, us, and vs are defined as

u =

[
u1
u2

]
=

[
R
V

]
, us =

[
2
2.5

]
, (9.12)

v =

[
v1
v2

]
=

[
F
xF

]
, vs =

[
1
0.5

]
. (9.13)

Solving for the steady state composition profile, i.e., solving ẋs = f(xs, us, vs) = 0
gives

xs =

 xs1
xs2
xs3

 =

 0.0500
0.4591
0.9500

 . (9.14)

Note that xs can be computed by using an ODE solver. A linearized model around
the steady state vectors xs, us and vs is given by

∆̇x = A∆x+B∆u+ C∆v, (9.15)

where ∆x = x− xs, ∆u = u− us, ∆v = v − vs and

A =

−Ls
1+VsKs

1
M1

Ls
2

M1
0

VsKs
1

M2
−Ls

2+VsKs
2

M2

Rs

M2

0
VsKs

2
M3

− Vs
M3

 =

−1.3576 0.3 0
2.6151 −0.6956 0.4

0 0.0478 −0.25

 , (9.16)

B =


xs
2−xs

1
M1

xs
1−ys1
M1

xs
3−xs

2
M2

ys1−ys2
M2

0 0

 =

 0.0409 −0.0491
0.0982 −0.0818

0 0

 , (9.17)

C =


xs
2−xs

1
M1

0
xs
3−xs

2
M2

Fs
M2

0 0

 =

 0.0409 0
0.0082 0.2

0 0

 . (9.18)

where the steady state variables are Rs = 2, Vs = 2.5, Fs = 1, xF = 0.5, Ls
1 =

Rs + Fs − Vs = 0.5, Ls
2 = Rs + Fs = 3, and

Ks
i =

α

(1 + (α− 1)xsi )
2
, i = 1, 2. (9.19)

ysi =
αxsi

1 + (α− 1)xsi
, i = 1, 2. (9.20)
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An infinite time LQ-optimal controller with the following weighting matrices

Q =

 1000 0 0
0 0 0
0 0 1000

 , P =

[
1 0
0 1

]
. (9.21)

are given by ∆u = G∆x, i.e.,

u = G(x− xs) + us, (9.22)

where

G =

[
−13.2839 −1.9656 −7.5059
15.0669 2.0020 6.3353

]
. (9.23)

Hence the control inputs vary around the offset us and the feedback seeks to mini-
mize the deviation x− xs. This example is implemented in the MATLAB script-file
main fcol3.m.

Example 9.2 (LQ controller with integral action for distillation column)

Consider the distillation column model in Example 9.1. We want to include integral
action in the controller. A state space model for the controller integrator is

ż = r − y = r −Dx, (9.24)

where r is the reference signal. Augmenting this with the state space model ∆̇x =
A∆x+B∆u gives

˙̃x︷ ︸︸ ︷[
∆̇x
ż

]
=

Ã︷ ︸︸ ︷[
A 0n×m

−D 0m×m

] x̃︷ ︸︸ ︷[
∆x
z

]
+

B̃︷ ︸︸ ︷[
B
0m×r

]
∆u+

[
0n×m

Im×m

]
r. (9.25)

This gives

Ã =


−1.3576 0.3000 0 0 0
2.6151 −0.6956 0.4000 0 0

0 0.0478 −0.2500 0 0
−1.0000 0 0 0 0

0 0 −1.0000 0 0

 , (9.26)

B̃ =


0.0409 −0.0491
0.0982 −0.0818

0 0
0 0
0 0

 . (9.27)

A simple solution is then to assume r = 0 in the LQ-controller design procedure.
Consider an LQ-objective where both the process state deviations, ∆x, and the con-
troller states, z, are weighted. We have

J =
1

2

∫ ∞

t0

(∆xTQ∆x+ zTQ2z +∆uTP∆u)dt =
1

2

∫ ∞

t0

(x̃T Q̃x̃+∆uTP∆u)dt,(9.28)
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where the weigting matrix Q̃ is given by

Q̃ =

[
Q 0n×m

0m×n Q2

]
=


1000 0 0 0 0
0 0 0 0 0
0 0 1000 0 0
0 0 0 500 0
0 0 0 0 500

 . (9.29)

This means that only the bottom-product and top-product compositions are weighted,
in addition to the controller states. The LQ-controller is then found from the solution
of the ARE

ÃTR+RÃ−RB̃P−1B̃TR+ Q̃ = 0, (9.30)

which gives the feedback matrix

G = −P−1B̃TR. (9.31)

This gives

G =
[
G1 G2

]
=

[
−13.9059 −4.8668 −76.7138 2.6790 22.1996
22.8848 1.4733 −20.1423 −22.1996 2.6790

]
. (9.32)

The final LQ-controller with integral action can be implemented as

u = G1(x− xs) +G2z + us, (9.33)

The practical implementation can be illustrated by the following MATLAB code lines

x=xs; % Initial values for the process states.

z=[0;0]; % Initial values for the controller states.

r=[0.05;0.96]; % Reference signal.

for i=1:N

y=D*x; % Process measurements.

u=G1*(x-xs)+G2*z+us; % LQ-controller with integral action.

z=z+h*(r-y); % Update controller state.

Y(i,:)=y’; U(i,:)=u’; % Store outputs and inputs.

f=fcol3(t,x,u,vs); % Putting control input to the process,

x=x+h*f; % updating the process model.

end

The order of the computations is of central importance. This should be noted by
the reader. All details of this example is implemented in the MATLAB script-file
main fcol3.m. A simulation of the closed loop system is illustrated in Figure 9.1.

Example 9.3 (Equivalence between LQ and PD controllers)
A single input and single output linear system ẋ = Ax + Bu and y = Dx can be
transformed to a canonical observability form, provided the pair (D,A) is observable.
Consider a 2nd order system on canonical observability form

A =

[
0 1
a0 a1

]
, B =

[
b0
b1

]
, D =

[
1 0

]
. (9.34)
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Figure 9.1: Simulation of the system in Example 9.2 with LQ optimal controller with
integral action. The figure is generated with the MATLAB script main fcol3.m.

The infinite time LQ optimal controller is of the form

u = g1x1 + g2x2. (9.35)

A PD-controller can be written as

u = Kpe+KpTdė

= Kp(−y) +KpTd(−ẏ)

= Kpx1 −KpTdẋ1, (9.36)

where we have used that e = r − y = −y = −x1 when r = 0. This can be written as

u = − Kp

1 +KpTdb0
x1 −

KpTd

1 +KpTdb0
x2. (9.37)

The PD-controller parameters are then found by comparing (9.35) and (9.37) and
solving for Kp and Td . This gives

Kp =
g1

1 + g2b0
, Td =

g2
g1

. (9.38)

Hence, for 2nd order systems we have that the LQ optimal controller is equivalent
with a PD-controller with optimal settings of the proportional gain, Kp, and the
derivative time constant, Td.

Example 9.4 (Equivalence between LQ and PD controllers)
Given a system on canonical observability form, say

ẋ︷ ︸︸ ︷[
ẋ1
ẋ2

]
=

A︷ ︸︸ ︷[
0 1
a0 a1

] x︷ ︸︸ ︷[
x1
x2

]
+

B︷ ︸︸ ︷[
0
0.5

]
u, (9.39)
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y =
[
1 0

]︸ ︷︷ ︸
D

[
x1
x2

]
︸ ︷︷ ︸

x

, (9.40)

where a0 = −2 and a1 = −3. The system have eigenvalues λ1 = −1 and λ2 = −2.
Hence, the two time constants of the system is T1 = − 1

λ1
= 1 and T2 = − 1

λ2
= 0.5.

The infinite time LQ optimal control problem with the following state and control
input weighting matrices

Q =

[
1 0
0 2

]
, P = 1, (9.41)

gives the following solution to the ARE, R, and the optimal feedback gain, G,

R =

[
1.5807 0.2462
0.2462 0.4085

]
, (9.42)

and

G =
[
g1 g2

]
=

[
−0.1231 −0.2042

]
. (9.43)

This gives the LQ optimal control

u = Gx = g1x1 + g2x2, (9.44)

where g1 = −0.1231 and g2 = −0.2042. Let us have a look at a standard PD-
controller, i.e.,

u = Kpe+KpTdė, (9.45)

e = r − y. (9.46)

where Kp is the proportional gain, Td is the derivative time constant and r is the
reference signal. From the state and output equations we have that

y = x1, (9.47)

ė = ṙ − ẏ = ṙ − ẋ1 = ṙ − x2. (9.48)

Consider the case where r = 0, and substituting this into (9.45) gives.

u = −Kpx1 −KpTdx2, (9.49)

Comparing the LQ controller (9.44)with the PD-controller (9.49) shows that they
are equivalent if g1 = −Kp and g2 = −KpTd, i.e.,

Kp = −g1 = 0.1231, (9.50)

Td =
g1
g2

= 1.6590. (9.51)

Hence, for this example the LQ optimal controller is equivalent with a PD-controller.
However, note that this is not a general result, i.e., the result does not hold for nth
order systems in general.
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Figure 9.2: Simulation of the system in Example 9.4 with LQ optimal PD controller.
The figure is generated with the MATLAB script lq2pd ex.m, and with a unit step
change at time zero in the reference signal r.

The system with the LQ optimal PD controller is implemented in the MATLAB
script-file lq2pd ex.m. A simulation after a unit step change at time zero in the
reference is illustrated in Figure 9.2. As we can see, there is a steady state error
between the response in y and the reference signal, r. Hence, we have, as expected
no integral action in the controller.

Example 9.5 (Designing LQ optimal PID controller)
Given the system as in Example 9.4. Augmenting the state equation with the follow-
ing model for the controller integrator

ż = r − y = r −Dx, (9.52)

gives

˙̃x =

Ã︷ ︸︸ ︷[
A 0

−D 0

]
x̃+

B̃︷ ︸︸ ︷[
B
0

]
u+

[
0
1

]
r, (9.53)

where

x̃ =

[
x
z

]
. (9.54)

Choosing an LQ objective with infinite horizon, i.e.,

J =
1

2

∫ ∞

0
(x̃T

Q̃︷ ︸︸ ︷[
Q1 0
0 Q2

]
x̃+ uTPu)dt, (9.55)
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with weighting matrices

Q =

[
1 0
0 2

]
, Q2 = 5, P = 1. (9.56)

The LQ optimal controller is given by

u = Gx, (9.57)

G = −P−1B̃TR, (9.58)

where R is a solution to the ARE

ÃTR+RÃ−RB̃P−1B̃TR+Q = 0. (9.59)

Using e.g., the MATLAB function are schur.m gives the positive solution, R, to
the ARE, and the optimal feedback gain matrix, G, as

R =

 20.7568 5.9406 −15.7926
5.9406 2.1253 −4.4721

−15.7926 −4.4721 15.5861

 , G =
[
−2.9703 −1.0627 2.2361

]
. (9.60)

This gives the LQ optimal controller

u = Gx̃ = g1x1 + g2x2 + g3z. (9.61)

A PID controller can be written as

u = Kp(r − y) +KpTdė+
Kp

Ti
z

= −Kpx1 −KpTdx2 +
Kp

Ti
z. (9.62)

Comparing with the LQ controller shows that they are equivalent if

Kp = −g1 = 2.9703, (9.63)

Td =
g1
g2

= 0.3578, (9.64)

Ti = −g1
g3

= 1.3284. (9.65)

The system with the LQ optimal PID controller is implemented in the MATLAB
script-file lq2pid ex.m. A simulation after a unit step change at time zero in
the reference is illustrated in Figure 9.3. As we can see, the response in y follows
the reference with zero steady state error. Hence, we have integral action in the
controller.
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Figure 9.3: Simulation of the system in Example 9.5 with LQ optimal PID controller.
The figure is generated with the MATLAB script lq2pid ex.m, and with a unit step
change at time zero for the reference signal r.

9.2 Matlab scripts for the examples

9.2.1 MATLAB script for Example 9.4

% lq2pd_ex.m

% Script for Example 3.4.

% This example shows the equivalence between an LQ optimal controller

% and a standard PD controller.

% Functions called: are_schur.

% Author: David Di Ruscio, 10.10.00.

%path(path,’s:\tex\fag\avreg\oving5\are_schur’)

A=[0,1;-2 -3]; B=[0;0.5]; D=[1,0]; % The state space model for the process.

Q=[1,0;0,2]; P=1; % Weightings for the LQ objective.

R=are_schur(A,B,Q,P); % Solve the Riccati equation.

G=-inv(P)*B’*R

Kp=-G(1) % The equivalent PD parameters.

Td=G(2)/G(1)

t1=10; dt=0.01; t=0:dt:t1; N=length(t);

r=1; % The reference signal.

x=[0;0];



144 Examples on continuous time LQ optimal control

for i=1:N

y=D*x;

u=-G(1)*(r-y)+G(2)*x(2); % u=G*x written as a PD-controller.

Y(i,1)=y;

U(i,1)=u;

dotx=A*x+B*u;

x=x+dt*dotx;

end

subplot(211), plot(t,Y), ylabel(’y’), grid

title(’Equivalence between LQ and PD controllers’)

subplot(212), plot(t,U), ylabel(’u’), grid,

xlabel(’Time: 0 \leq t \leq 10’)

print -deps lq2pd_ex_fig % Make figure in eps-format.
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9.2.2 MATLAB script for Example 9.5

% lq2pid_ex.m

% Script for Example 3.5

% This example shows the equivalence between an LQ optimal controller

% and a standard PID controller.

% Functions called: are_schur.

% Author: David Di Ruscio, 10.10.00.

%path(path,’s:\tex\fag\avreg\oving5\are_schur’)

A=[0,1;-2 -3]; B=[0;0.5]; D=[1,0]; % The state space model for the process.

Q=[1,0;0,2]; P=1; Q2=5; % Weighting matrix and parameters.

%Q=D’*10*D; P=1; Q2=5; % alternative weights.

At=[A,zeros(2,1);-D zeros(1)]; Bt=[B;0]; % Model for process with controller integrator.

Qt=[Q zeros(2,1);zeros(1,2) Q2]; % The corresponding weighting matrix.

R=are_schur(At,Bt,Qt,P); % Solve the algebraic Riccati equation.

G=-inv(P)*Bt’*R % The LQ optimal feedback gain matrix.

Kp=-G(1) % The equivalent parameters for the PID-controller.

Ti=-G(1)/G(3)

Td=G(2)/G(1)

t1=10; dt=0.01; % Simulate the system.

t=0:dt:t1; N=length(t);

r=1; % The reference signal.

x=[0;0]; z=0; % Initial values for the "states".

for i=1:N

y=D*x;

u=-G(1)*(r-y)+G(2)*x(2)+G(3)*z; % u=G*x written as a PID-controller.

Y(i,1)=y;

U(i,1)=u;

dotx=A*x+B*u;

x=x+dt*dotx; % The process state.

z=z+dt*(r-y); % the controller state (integrator).

end

subplot(211), plot(t,[r*ones(N,1) Y]), ylabel(’y’), grid

title(’Equivalence between LQ and PID controllers’)

subplot(212), plot(t,U), ylabel(’u’), grid

xlabel(’Time: 0 \leq t \leq 10’)

print -deps lq2pid_ex_fig % Make figure in eps-format.
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Chapter 10

Examples on discrete time LQ
optimal control

10.1 Examples: discrete time LQ-optimal control

Example 10.1 (LQ controller for scalar system)
Given a system described by the scalar system

xk+1 = axk + buk, (10.1)

yk = xk, (10.2)

with the following LQ objective function

Ji =
1

2
sy2N +

1

2

N−1∑
k=i

(qy2k + pu2k). (10.3)

The optimal control which minimizes the LQ objective is given by

gk = − abrk+1

p+ b2rk+1
, (10.4)

where rk+1 is given by the discrete time Riccati equation, i.e.,

rk = q + a2rk+1 −
a2b2r2k+1

p+ b2rk+1
, (10.5)

rN = s. (10.6)

Let a = 0.9, b = 0.5,q = 2, p = 1, s = 2, i = 1 and N = 10. A MATLAB script-file
implementation of this example is illustrated in ov7oppg3.m.
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10.2 Matlab scripts for the examples

10.2.1 MATLAB script for Example 10.1

% ov7oppg3.m

% Script for loesning av oppgave 3 paa oeving 7.

% David Di Ruscio.

a=0.9; b=0.5; % Modellparametre.

q=2; p=1; s=2; % Vektparametre.

x0=10; % Initialverdi for tilstanden.

N=10; % Slutt-tid (diskret tidspunkt).

R=zeros(N,1); % Setter av plass for lsningene av Riccati-ligningen.

G=zeros(N-1,1); % Setter av plass for tilbakekoplingskoeffisientene.

r=s; % Grensebetingelse, R_N=S_N.

R(N)=s;

for k=N-1:-1:1 % Itererer fra slutt-tiden til initial-tidspunktet.

k

g=-b*a*r/(p+b^2*r); % Optimal tilbakekoplings-konstant, g(k)=f(r(k+1)).

r=a^2*r-a^2*b^2*r^2/(p+b^2*r)+q; % Den skalare Riccati-ligning, r(k)=f(r(k+1)).

R(k)=r;

G(k)=g;

end

Y=zeros(N,1); U=zeros(N-1,1); % Simulerer systemet med optimal LQ-regulator.

x=x0; % Initialverdi for tilstanden.

for k=1:N-1

y=x;

Y(k)=x;

u=G(k)*x;

U(k)=u;

x=a*x+b*u;

end

Y(N)=x;

Ys=zeros(N,1); Us=zeros(N-1,1); % Simulerer systemet med suboptimal LQ-regulator.

x=x0; % Initialverdi for tilstandsvektoren.

for k=1:N-1

y=x;

Ys(k)=x;

u=G(1)*x;

Us(k)=u;

x=a*x+b*u;

end

Ys(N)=x;

figure(1)
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subplot(211), plot(1:length(Y),Y,’bo-’), ylabel(’y_k’)

subplot(212), plot(1:length(U),U,’bo-’), ylabel(’u_k’)

figure(2)

subplot(211), plot(1:length(R),R,’bo-’), ylabel(’r_k’)

subplot(212), plot(1:length(G),G,’bo-’), ylabel(’g_k’)

xlabel(’Discrete time: 1 \leq k \leq 10’)
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Part III

ESTIMATION AND
CONTROL





Chapter 11

Control and Estimation

11.1 Continuous estimator and regulator duality

It can be shown that the solution to the Linear Quadratic optimal control problem
is dual to the optimal minimum variance estimator problem, Kalman filter. This
means that if we know the solution to the LQ optimal control problem, then we
can directly write down the solution to the optimal estimator problem by using the
duality principle. However, note that the LQ optimal control problem is a topic of
a course in Advanced control theory.

The duality principle can be formulated in the following table

Regulator Estimator
A → AT

B → DT

Q → V
P → W
G → −KT

A+BG → (AT −DTKT )T

R → X
−t → t

Ṙ → −Ẋ

(11.1)

As we know from the solution of the LQ optimal control problem the Riccati equation
is solved backward in time from the final time instant, i.e. recursively from the final
value, R(t1) = S. The solution to the dual minimum variance estimator problem
is also containing a Riccati equation. The Riccati equation in the dual estimator
problem is however solved forward in time with initial values given at the start time.
This is the reason why we have specified −t in the table for the LQ control problem
and t in connection with the dual estimator problem.
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11.2 Minimum variance estimation in linear continuous
systems

Given a linear dynamic system described by

ẋ = Ax+Bu+ v, (11.2)

y = Dx+ Eu+ w, (11.3)

where v is uncorrelated white process noise with zero mean and covariance matrix
V and w is uncorrelated white measurements noise with zero mean and covariance
matrix W , i.e. such that

V = E(vvT ), (11.4)

W = E(wwT ). (11.5)

Furthermore, in this section we assume the process noise v to be uncorrelated/independent
of the measurements noise w, i.e. E(vwT ) = 0. We assume that A, B, D and E
are known model matrices. Furthermore we assume that the covariance matrices
V and W are known or specified and that the measurements vector y is measured
and given. We also assume that the matrix pair A,D is observable. Since the state
vector x is not measured it can be estimated in a so called state estimator or state
observer.

The principle of duality in connection with the solution of the Linear Quadratic (LQ)
optimal control problem can be used to find the solution to the optimal minimum
variance estimation problem.

Note that we have from the duality principle that Ṙ → dX
d(−t) = −Ẋ. using the

duality principle we have that

Ẋ = AX +XAT −XDTW−1DX + V, X(t0) given, (11.6)

which is a matrix Riccati equation which defines X. The Kalman filter gain matrix
is then given by

KT = W−1DX. (11.7)

Let us define the error between the actual state, x, and the estimated state, x̂, as
follows

∆x = x− x̂. (11.8)

It can be shown that the solution to the riccati equation, X, is the covariance matrix
of the error between x and the estimate x̂, i.e.

X = E[(x− x̂)(x− x̂)T ] = E[∆x∆xT ]. (11.9)

The state estimator is then given by

˙̂x = Ax̂+Bu+K(y − ŷ), (11.10)

ŷ = Dx̂+ Eu. (11.11)
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x̂ is the minimum variance estimate of the state vector x in the sense that X is
minimized. Note also that ŷ is the optimal prediction of the measurements vector y,
given all old outputs y and given all old input vectors u as vell as the present input
at the present time t.

The reason for that ŷ is dependent of the input u at present time t is the direct
feed through term matrix E. However E is in principle always zero for continuous
systems, but a nonzero E may be the results of some model reduction procedures.
Note also that a non zero E often is the case in discrete time systems due to sampling.

Equations (11.10) and (11.11) gives the following equation for the state estimate

˙̂x = (A−KD)x̂+ (B −KE)u+Ky, (11.12)

where the initial state estimate x̂(t0) is given.

Note that the eigenvalues of the matrix A −KD defines the stability properties of
the estimator. It make sense that K is so that A−KD is stable, i.e., all eigenvalues
in the left half of the complex plane. the reason for this is that x̂ is given from a
differential equation driven by known inputs u and known outputs y. Note also that
when A− kD is stable then the effect of wrong initial values x̂(t0) will die out when
t → ∞.

Let us study the properties of the estimator by studying the excepted value of the
error in the state estimate ∆x. From the definition (11.8) we have that

∆̇x = ẋ− ˙̂x. (11.13)

Using (11.2) and (11.10) gives

∆̇x = Ax+Bu+ v − [Ax̂+Bu+K(y − ŷ)]. (11.14)

using (11.3) and (11.11) gives

∆̇x = Ax+Bu+ v − [Ax̂+Bu+K(Dx+ Eu+ w −Dx̂− Eu)], (11.15)

which gives

∆̇x = (A−KD)∆x+ v −Kw. (11.16)

The excepted value of the estimated error, ∆x, is then given by

E{∆̇x} = (A−KD)E{∆x}. (11.17)

The stability properties of the estimator can be analyzed by studying the estimation
error when t → ∞.

It can be shown that the minimum variance estimator is stable. This can be argued
from the fact that the LQ optimal controller is stable (by properly choice of some
weighting matrices) and that the optimal minimum variance estimator is dual to the
LQ controller. Hence, a similar stability theorem exists for the optimal minimum
variance estimator.

In the following a different argumentation for stability will be given. Assume that v
and w is uncorrelated white noise stationary processes. Then the covariance matrices
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will be constant and positive definite, i.e., V > 0 and W > 0. Letting t → ∞ then
we have that X is a solution to the stationary algebraic matrix Riccati equation

AX +XAT −XDTW−1DX + V = 0. (11.18)

This can be written as a Lyapunov matrix equation, i.e.,

(A−KD)X +X(A−KD)T = −(V +KWKT ). (11.19)

From the discussion above it is clear that X > 0 and V + KWKT > 0. From
Lyapunovs stability theory we then know that A −KD is a stable matrix, i.e. all
eigenvalues of A−KD lies in the left half of the complex plane.

It is clear that when A−KD is a stable matrix then the excepted value is E{∆̇x} = 0.
From (11.17) we then have that 0 = (A−KD)E{∆x}. This implies that E{∆x} = 0.

Another alternative is to analyze the error from the solution of (11.17). We have

lim
t→∞

E{∆x} = lim
t→∞

[e(A−KD)(t−t0)]E{∆x(t0)} = 0, (11.20)

which is valid even if E{∆x(t0)} ≠ 0.

11.3 Separation Principle: Continuous time

Theorem 11.3.1 (Separation Principle)
Given a linear continuous time combined deterministic and stochastic system

ẋ = Ax+Bu+ Cv, (11.21)

y = Dx+ w, (11.22)

where v and w is uncorrelated zero mean white noise processes with covariance
matrices V og W , respectively.

The system should be controlled such that the following performance index is min-
imized

J =
1

2
E{xT (t1)Sx(t1) +

∫ t1

t0

[xTQx+ uTPu]dt}, (11.23)

with respect to the control vector u(t) in time interval, t0 ≤ t < t1.

The solution to this stochastic optimal control problem is given by

u = G(t)x̂. (11.24)

G is the feedback gain matrix found by solving the corresponding deterministic LQ
optimal control problem where x is known, i.e., with v = 0 and w = 0 in (11.21) and
(11.22) and the same LQ objective as in (11.23). It is no need for the expectation
operator E({·} in the deterministic case. This means that G is given by

G(t) = −P−1BTR (11.25)
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where R is the unique positive definite solution to the-equation

−Ṙ = ATR+RA−RBP−1BTR+Q, R(t1) = S. (11.26)

x̂ is optimal minimum variance estimate of the state vector x. x̂ is given by the
Kalman-filter for the system, given by

˙̂x = Ax̂+Bu+K(y −Dx̂), (11.27)

with given initial state, x̂(t0), and where the Kalman filter gain matrix, K, is given
by

K(t) = XDTW−1, (11.28)

and where X is the maximum positive definite solution to the Riccati equation

Ẋ = AX +XAT −XDTW−1DX + CV CT , X(t0) = given. (11.29)

△

Often an infinite time horizon is used, i.e., t1 → ∞. This leads to the stationary
Riccati equation, i.e., putting (Ṙ = 0) and the stationary Riccati equation for X,
i.e., with Ẋ = 0 i (11.29). In this case the gain matrices G and K are constant
time invariant matrices. Note that a stationary Riccati equation are denoted an
Algebraic Riccati Equation (ARE).

11.4 Continuous LQG controller

An Linear Quadratic Gausian (LQG) controller for MIMO systems where an Linear
Quadratic (LQ) optimal feedback matrix G is used in a feedback from the minimum
variance optimal (Kalman filter) estimate, x̂, of the process/system state x. The
controller is basically of the form u = Gx̂. The LQG controller may be useful in
problems where the state vector x is not measured or available.

A short description of the LQG controller is as follows. Given a system model

ẋ = Ax+Bu, (11.30)

y = Dx, (11.31)

and the state observer

˙̂x = Ax̂+Bu+K(y − ŷ), (11.32)

ŷ = Dx̂, (11.33)

and the controller

u = Gx̂. (11.34)

An analysis of the total closed loop system with LQG controller is as follows. Note
that the analysis is valid for arbitrarily gain matrices G and K.
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The above Equations (11.30)-(11.34) gives an autonomous system[
ẋ
˙̂x

]
=

[
A BG
KD A+BG−KD

] [
x
x̂

]
. (11.35)

The stability of the total system is given by the eigenvalues of the system matrix.
For simplicity of stability analysis we study the transformed system, i.e.,[

x
x− x̂

]
=

[
x
∆x

]
=

[
I 0
I −I

] [
x
x̂

]
. (11.36)

this gives the autonomous system

[
ẋ

∆̇x

]
=

Ātc︷ ︸︸ ︷[
A+BG −BG
0 A−KD

] [
x
∆x

]
. (11.37)

because [
I 0
I −I

]−1

=

[
I 0
I −I

]
. (11.38)

As we see, the stability of the entire LQG controlled system is given by n eigenvalues
from the ”feedback” matrix A+BG and n eigenvalues from the ”estimator” matrix
A−KD. The LQG system matrix Ātc have 2n eigenvalues.

As a rule of thumb the estimator gain matrix K is ”tuned” such that the eigenvalues
of the matrix A −KD lies to the left of the eigenvalues of A + BG in the left half
part of the complex plane. Often it is stated that the time constants of the estimator
A − KD should be approximately ten times faster than the time constants of the
matrix A+BG.

If we have modeling errors then the LQG controller should be analyzed for robustnes.
It may be shown that the LQG controlled system may be unstable due to modeling
errors, and an LQG design should always be analyzed for robustness (stability) due
to perturbations (errors) in the model.

One should that an LQG controller is close to an MPC controller and the same
robustness/stability analysis due to modeling errors should be performed for any
model based controller in which an estimate x̂ is used for feedback instead of the
actual state x.

11.5 Discrete time LQG controller

11.5.1 Analysis of discrete time LQG controller

We will in this section discuss the discrete time LQG controller. We assume that
the process is described by

xk+1 = Axk +Bpuk, (11.39)

yk = Dxk. (11.40)
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The controller is of the form

uk = Gx̂k. (11.41)

where x̂k is given by the state observer

ȳk = Dx̄k (11.42)

x̂k = x̄k +K(yk − ȳk), (11.43)

x̄k+1 = Ax̂k +Buk. (11.44)

where x̄0 is given. Here x̄k is defined as the a-priori estimate of xk. Furthermore we
define x̂k as the a-posteriori estimate of xk. We assume that the feedback matrix
G is computed based on the model matrices A,B. The observer gain matrix K is
computed based on the model matrices A,D.

We see that we have a perfect model is B = Bp. If B ̸= Bp then we have modeling
errors. Let us in the following study the entire closed loop system. Putting (11.41)
into (11.39) and (11.44) and we obtain

xk+1 = Axk +BpGx̂k, (11.45)

x̄k+1 = (A+BG)x̂k. (11.46)

We may now eliminate x̂k from (11.45) and (11.46) by using (11.43).

xk+1 = (A+BpGKD)xk +BpG(I −KD)x̄k, (11.47)

x̄k+1 = (A+BG)KDxk + (A+BG)(I −KD)x̄k. (11.48)

This means that we have an autonomous system

[
xk+1

x̄k+1

]
=

Atd︷ ︸︸ ︷[
A+BpGKD BpG(I −KD)
(A+BG)KD (A+BG)(I −KD)

] [
xk
x̄k

]
. (11.49)

The entire system is stable if the 2n eigenvalues of the matrix Atd is located inside
the unit circle in the complex plane. Let us use the transformation (11.36). This
gives

[
xk+1

xk+1 − x̄k+1

]
=

Ātd︷ ︸︸ ︷[
A+BpG −BpG(I −KD)
(Bp −B)G A−AKD − (Bp −B)G(I −KD)

] [
xk
xk − x̄k

]
.(11.50)

In case of a perfect model, i.e., B = Bp, we se that the eigenvalues of the total
system is given by the n eigenvalues of the matrix A+BG and the n egenvalues of
the observer system matrix A−AKD.

This also means that in case of modeling errors we have to check the eigenval-
ues/poles of the system matrix for the entire system, i.e., Ātd for different cases of
model errors Bp.

Note also that a rule of thumb is that the eigenvalues of the observer matrix A−AKD
should be ten times faster than the eigenvalues of the controller feedback matrix
A+BG.
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11.6 The discrete Kalman filter

11.6.1 Innovation formulation of the Kalman filter

Given a process

xk+1 = Axk +Buk + vk, (11.51)

yk = Dxk + wk, (11.52)

where vk is white process noise and wk is white measurements noise with known
covariance matrices.

First, let us present the apriori-aposteriori formulation of the discrete time optimal
minimum variance Kalman filter as follows

ȳk = Dx̄k (11.53)

x̂k = x̄k +K(yk − ȳk), (11.54)

x̄k+1 = Ax̂k +Buk. (11.55)

where x̄0 is a given initial value for the apriori or predicted state estimate. Here, x̄k is
defined as the apriori or predicted state estimate of the state vector xk. Furthermore,
x̂k is defined as the aposteriori state estimate of xk. The apriori-aposteriori Kalman
filter is further discussed in Section 11.6.3.

Note that x̂k can be eliminated from the estimator equation (11.55), i.e. an equiva-
lent estimator for the predicted state x̄k is given by

ȳk = Dx̄k, (11.56)

x̄k+1 = Ax̄k +Buk + K̃(yk − ȳk). (11.57)

= (A− K̃D)x̄k +Buk + K̃yk, (11.58)

where

K̃ = AK. (11.59)

It is the apriori estimate, x̄k which is the essential state in the estimator. x̄k is also
referred to as the predicted state.

The dynamics of the estimator is in this case described by the eigenvalues of the
matrix A − K̃D = A − AKD. the estimator given by (11.56)-(11.57) above gives
the optimal one step ahead prediction ȳk of the output yk. This formulation is used
if we only want to compute the prediction of the output yk. As a rule of thumb we
may say that K̃ = AK is the Kalman filter gain for the prediction of yk and for
computing the predicted state x̄k.

Note also that if we are using yk = ȳk + εk where the predicted output is given by
ȳk = Dx̄k then we obtain the innovations formulation of the Kalman filter, i.e.,

x̄k+1 = Ax̄k +Buk + K̃εk, (11.60)

yk = Dx̄k + εk, (11.61)
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where εk = yk − ȳk is the innovations process.

Notice that the optimal Kalman filter gain K̃ is such that the innovations process
εk is white noise.

This means that K̃ = AK is the kalman filter gain in the innovations formulation
(11.60)-(11.61) and K is the Kalman filter gain in the apriori-aposteriori formulation
(11.42)-(11.44) of the Kalman filter.

Note that the above equations easily is extended to be valid for a proper system in
which yk = Dx̄k + Euk + εk.

11.6.2 Development of the Kalman filter on innovations form

Given a process

xk+1 = Axk + vk, (11.62)

yk = Dxk + wk, (11.63)

where vk is white process noise and wk is white measurements noise with covariance
matrices given by

E(

[
vk
wk

] [
vk
wk

]T
) =

[
V R12

RT
12 W

]
(11.64)

The Kalman filter on innovations form is then given by

x̄k+1 = Ax̄k + K̃εk, (11.65)

yk = Dx̄k + εk. (11.66)

Note that the Kalman filter gain K̃ in the innovations formulation is related to the
Kalman filter gain K in the apriori-aposteriori formulation as K̃ = AK.

When analyzing the Kalman filter the estimating error ∆xk = xk − x̄k is of great
importance. The equations for the estimating errors are obtained from the above
equations. i.e. from the process model and the Kalman filter above, i.e.,

∆xk+1 = A∆xk + vk − K̃εk, (11.67)

εk = D∆xk + wk, (11.68)

∆xk = xk − x̄k. (11.69)

The equations for the estimating error are to be used in the following discussions.

Equation for computing K̃ in the predictor

The development which is given here is based on the fact that the innovations process
εk is white noise when the optimal Kalman filter gain K̃ is used in the filter. Since εk
is white it is independent and uncorrelated with the estimation error ∆xk+1. Hence,
by demanding

E(∆xk+1ε
T
k ) = 0, (11.70)
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then we can derive an expression for K̃. We have that

∆xk+1ε
T
k = (A∆xk + vk − K̃εk)ε

T
k

= A∆xkε
T
k + vkε

T
k − K̃εkε

T
k

= A∆xk(∆xTkD
T + wT

k ) + vk(∆xTkD
T + wT

k )−Kεkε
T
k . (11.71)

Using this in (11.70) gives

E(A∆xk∆xTkD
T + vkw

T
k − K̃εkε

T
k ) = 0, (11.72)

where we have used that E(∆xkv
T
k ) = 0 and E(∆xkw

T
k ) = 0. We have then obtained

an equation

AXDT +R12 − K̃∆ = 0, (11.73)

where

∆ = E(εkε
T
k ) = DXDT +W. (11.74)

This gives the following expression for the Kalman filter gain

K̃ = (AXDT +R12)(DXDT +W )−1. (11.75)

This is the equation for th Kalman filter gain in the innovations formulation of the
Kalman filter. We now have to find an expression for the covariance matrix of the
estimation error, X = E(∆xk∆xTk ). It can be shown that X is given as the solution
of a matrix Riccati equation.

Equation for computing X = E(∆xk∆xT
k )

The derivation of the riccati equation for computing the covariance matrix X is
based that we under stationary conditions have that

E(∆xk+1∆xTk+1) = E(∆xk∆xTk ) = X. (11.76)

From equations (11.67) and (11.68) we have that

∆xk+1 = A∆xk + vk − K̃

εk︷ ︸︸ ︷
(D∆xk + wk), (11.77)

which gives

∆xk+1 = (A− K̃D)∆xk + vk − K̃wk. (11.78)

we have that the estimation error ∆xk is uncorrelated with the white noise processes
vk and wk. We then have that

∆xk+1∆xTk+1 = [(A− K̃D)∆xk + vk − K̃wk][(A− K̃D)∆xk + vk − K̃wk]
T

= (A− K̃D)∆xk∆xTk (A− K̃D)T + (vk − K̃wk)(vk − K̃wk)
T

= (A− K̃D)∆xk∆xTk (A− K̃D)T + vkv
T
k − vkw

T
k K̃

T

− K̃(vkw
T
k )

T + K̃wkw
T
k K̃

T . (11.79)
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Using the mean operator E(·) on both sides of the equal sign gives

X = (A− K̃D)X(A− K̃D)T + V −R12K̃
T − K̃RT

12 + K̃WK̃T , (11.80)

which also can be written as follows

X = (A− K̃D)X(A− K̃D)T +
[
I K̃

] [ V R12

RT
12 W

] [
I K̃

]T
. (11.81)

Note that (11.80) and (11.81) is a discrete matrix Lyapunov equation in X when
K̃ is given. A Lyapunov equation is a linear equation. The Lyapunov equation can
e.g. simply be solved by using the MATLAB control system toolbox function dlyap.
By substituting the expression for the Kalman filter gain K̃ given by (11.75) into
(11.81) gives the discrete Riccati equation for computing the covariance matrix X,
i.e.,

X = AXAT + V − K̃(AXDT +R12)
T

= AXAT + V − (AXDT +R12)(DXDT +W )−1(AXDT +R12)
T .

(11.82)

The stationar Riccati equation can simply be solved for X by iterating (11.82) until
convergence. Another elegant method is to iterate both (11.75) and (11.80) until
convergence and computing both K̃ and X at the same time. this is illustrated and
implemented in the MATLAB function dlqe2.m.

function [K,X,itnum]=dlqe2(A,C,D,V,W,R12);

% DLQE2

% [K,X]=dlqe2(A,C,D,V,W,R12);

% This function computes the Kalman gain K in the Kalman filter on

% innovations form, and the covariance matrix X of the estimation

% error, i.e. the error between the state and the predicted state.

X=C*V*C’; % Initial covariance matrix.

K=(A*X*D’+R12)*pinv(D*X*D’+W); % The corresponding Kalman gain.

it=100; % Maximum number of iterations.

Tol=1e-8; % Tolerance for norm(X(i)-X(i-1)).

Xold=X*0; % Iterate for the solution X of

for i=1:it; % the discrete Riccati equation.

K=(A*X*D’+R12)*pinv(D*X*D’+W);

AKD=A-K*D;

X=AKD*X*AKD’+V-R12*K’-K*R12’+K*W*K’;

if norm(X-Xold) <= Tol

itnum=i;

break

end

Xold=X;

end

K=(A*X*D’+R12)*pinv(D*X*D’+W);
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11.6.3 Derivation of the Kalman filter on apriori-aposteriori form

Given a process

xk+1 = Axk + vk, (11.83)

yk = Dxk + wk, (11.84)

where vk is white process noise and wk is white measurements noise with covariance
matrices given by

E(

[
vk
wk

] [
vk
wk

]T
) =

[
V R12

RT
12 W

]
. (11.85)

We here note that the process noise vk may be correlated with the measurements
noise wk, i.e. E(vkw

T
k ) = R12.

The kalman filter on apriori-aposteriori form is basically used when we are out for
the optimal state estimate of xk. The filter is of the form

ȳk = Dx̄k (11.86)

x̂k = x̄k +K(yk − ȳk), (11.87)

x̄k+1 = Ax̂k +R12∆
−1(yk − ȳ), (11.88)

where the initial predicted state x̄0 is given or specified. Here x̄k is defined as
the apriori state estimate of xk. the estimate x̄k is also often referred to as the
predicted state. Furthermore we define x̂k as the aposteriori state estimate of xk.
Apriori means known in advance, and aposteriori means the new information which
is obtained by the updating in (11.87), i.e., by using the apriori information and the
new information in the measurement yk. The reason for that the state estimate is
divided into two parts x̄k and x̂k is mainly because the system is discrete time, e.g.
because of sampling.

The kalman filter gain K in the filter given by (11.86)-(11.88) above is given by

Kk = X̄kD
T (DX̄kD

T +W )−1, (11.89)

X̂k = (I −KkD)X̄k(I −KkD)T +KkWKT
k , (11.90)

X̄k+1 = AX̂kA
T + V + Zk, (11.91)

where

Zk = −R12∆
−1RT

12 −AKkR
T
12 −R12K

T
k A

T . (11.92)

Note that (11.91) contain an extra term given by Zk when the process and measure-
ments noise is correlated, this term is not present when R12 = 0, which usually is
the case.

In order to start the filter process we need an initial value for the covariance matrix
X̄0, i.e. when we look at the filter at time k = 0. Note that the covariance matrices
are defined as follows

X̄k = E((xk − x̄k)(xk − x̄k)
T ), (11.93)

X̂k = E((xk − x̂k)(xk − x̂k)
T ). (11.94)
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Note that when the system is time invariant, i.e. when the system matrices A and D
and the noise covariance matrices V , W og R12 are constant matrices, then the filter
will be stationary and we will have that X̄k+1 = X̄k = X̄ and Kk = K are constant
matrices. Note also that (11.90) can be expressed as the following alternative

X̂k = X̄k −KkDX̄k. (11.95)

However, Equation (11.90) is to be preferred of numerical reasons due to the fact that
all terms in (11.90) are symmetric and positive semidefinite. Hence, it is of higher
probability that the final computed results is symmetric and positive semidefinite
by using (11.90). The final computed covariance matrix X̂ should be symmetric and
positive semidefinite, i.e. symmetric and X̂ ≥ 0

Equation for computing Kk in the filter

The derivation of the Kalman filter gain matrix presented in this section is based
on the fact that when Kk is the optimal minimum variance filter gain, then the
innovations process, εk, is white noise and uncorrelated with the state deviation
variables ∆x̄k+1 = xk+1 − x̄k+1 as well as ∆x̂k = xk − x̂k, i.e.,

E(∆x̄k+1ε
T
k ) = E((xk+1 − x̄k+1)ε

T
k )

= E((Axk + vk −Ax̂k)ε
T
k ) = AE(∆x̂kε

T
k ) = 0 , (11.96)

since E(vkε
T
k ) = 0

In this section we will derive an expression for the stationary Kalman filter gain, K,
from the equation

E(∆x̂kε
T
k ) = 0. (11.97)

We take the updating given by (11.87) as the starting point and write

∆x̂k = xk − x̂k = xk − x̄k −Kεk = ∆x̄k −Kεk. (11.98)

Post multiplication with εTk = (yk − ȳk)
T = (D(xk − x̄k) + wk)

T gives

∆x̂kε
T
k =

(xk − x̂k)((xk − x̄k)
TDT + wT

k ) = (xk − x̄k)((xk − x̄k)
TDT + wT

k )−Kεkε
T
k .

(11.99)

Using the mean operator E(·) on both sides of the equal sign in (11.99) gives

0 = X̄DT −KE(εkε
T
k ),

(11.100)

because

E((xk − x̂k)ε
T
k = 0, (11.101)

E((xk − x̂k)w
T
k ) = 0, (11.102)

E((xk − x̄k)w
T
k ) = 0, (11.103)
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when we are using the optimal Kalman filter gain K.

An alternative derivation is as follows

E(∆x̂kε
T
k ) = E((∆x̄k −Kεk)ε

T
k ) = 0. (11.104)

And from Eq. (11.104) we have

E((∆x̄k −Kεk)ε
T
k ) = E(∆x̄k

εTk︷ ︸︸ ︷
(∆x̄TkD

T + wT
k )−KE(εkε

T
k )

= X̄DT −KE(εkε
T
k ) = 0, (11.105)

since E(∆x̄kw
T
k ) = 0.

We then get from (11.100) (or equivalently (11.105) ) that the optimal Kalman filter
gain matrix in the filter is given by

K = X̄DT (DX̄DT +W )−1, (11.106)

where we have used that

E(εkε
T
k ) = DX̄DT +W. (11.107)

Let us now compare (11.106) with the expression for K̃ = AK for the Kalman
filter gain in the predictor given by Equation (11.75). As we see, the equations are
consistent and the same when R12 = 0. However, (11.106) will be valid even when
the process noise and the measurements noise are correlated, but we then have to
take X̄ given by (11.82).

Equation for computing X̂

The updating equation (11.87) can be expressed as follows

x̂k = x̄k +K(yk − ȳk) = (I −KD)x̄k +KDxk +Kwk. (11.108)

We can then write the estimator error xk − x̂k as follows

xk − x̂k = xk − ((I −KD)x̄k +KDxk +Kwk)

= (I −KD)(xk − x̄k) +Kwk. (11.109)

This gives

X̂k = (I −KD)X̄k(I −KD)T +KWKT . (11.110)

Equation for updating X̄k

We have earlier deduced the Riccati equation for computing X̄k in connection with
the Kalman filter on prediction and innovations form. Se Equations (11.80)-(11.82).
By substituting the expression for X̂k given by (11.90) into Equation (11.91) gives
Equation (11.80). This proves Equation (11.91).
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Notice that a simple derivation (when R12 = 0) is as follows. We have

X̄k+1 = E(∆x̄k+1∆x̄Tk+1), (11.111)

Using that

∆x̄k+1 = xk+1 − x̄k+1 = Axk + vk −Ax̂k = A∆x̂k + vk, (11.112)

where we have used that x̄k+1 = Ax̂ when R12 = 0 in (11.88). Hence we find from
(11.112) that

X̄k+1 = AX̂kA
T + V. (11.113)

since E(∆x̂vTk ) = 0.

11.6.4 Summary

It is important to note that for discrete time systems, we have two formulations
of the Kalman filter, one Kalman filter on innovations or prediction form, and one
Kalman filter on apriori-aposteriori form for filtering or optimal state estimation.
The Kalman filter gain in the innovations form is denoted K̃ and the Kalman filter
gain in the filter is denoted K.

The relationship is given by K̃ = AK when the process noise vk and the measure-
ments noise wk are uncorrelated, i.e. when R12 = 0. When the process noise and the
measurements noise are correlated then the Kalman filter gain in the innovations
form (the predictor) is given by

K̃k = (AX̄kD
T +R12)(DX̄kD

T +W )−1,

and the gain in the filter used to compute the aposteriori state estimate is given by

Kk = X̄kD
T (DX̄kD

T +W )−1.

As we see, the relationship is particularly simple and given by K̃k = AKk when the
noise are uncorrelated, i.e. when R12 = 0.
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Chapter 12

The Kalman filter algorithm for
discrete time systems

12.1 Contunuous time state space model

A continuous time nonlinear state space model can usually be written as

ẋ = f(x, u, v) (12.1)

y = g(x, u) + w (12.2)

where x is the state vector, u is the vector of known deterministic inputs, v is a
process noise vector, w is a zero mean measurements noise vector, and y is a vector
of measurements (observations).

This model is both driven by known deterministic inputs (u) and usually unknown
process and measurements disturbances, (v and w).

12.2 Discrete time state space model

We will in this section formulate a discrete process model which can be used to
design an Extended and possibly Augmented Kalman filter.

A discrete time model, which can be a discrete version of the continuous model, can
usually be written as follows.

xt+1 = ft(xt, ut, vt) + dxt (12.3)

yt = gt(xt, ut) + wt (12.4)

where wt is zero mean discrete measurements noise, dxt is a zero mean process noise
vector which also can represent unmodeled effects or uncertainity. The effect of
adding the noise vector dxt to the right hand side of the process noise is that it
usually gives more tuning parameters in the process noise covariance matrix, which
can result in a Kalman filter gain matrix with better properties of estimating the
states.
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We will next write this model on a form which is more convenient for nonlinear
filtering (Extended Kalman filter, Jazwinski (1970)). The problem is the case when
the process model function ft(·) is a non-linear function of the pocess noise vector
vt. Assume that the statistical properties of vt is known. In general, the statistical
properties of the non linear function ft(vt) is unknown. The idea is to augment a
model for vt with the process model such that the augmented model is linear in the
process noise.

Assume the case when the process noise have known mean (or trend) v̄t and that
the noise can be modeled as

vt = v̄t + dvt (12.5)

where dvt is a zero mean white noise vector. The known mean process noise vector
or trend v̄t can be augmented into the vector of known deterministic inputs (ut).
The resulting model is then driven by both deterministic inputs (ut and v̄t) and zero
mean white process and measurements noise (dvt and wt). ft(·) can in some cases
be assumed to be a linear function of the white process noise vector (dvt).

Assume next the better case when the process noise vt can be modeled as a random
walk (or drift), i.e.

vt+1 = vt + dvt (12.6)

The vector vt can be augmented into the state vector xt. The resulting augmented
model is linear in the process noise (dvt).

The process model to be used in the filter is assumed to be of the following form,
(i.e. linear in the process noise vector)

xt+1 = ft(xt, ut) + Ωtvt (12.7)

yt = gt(xt, ut) + wt (12.8)

which is linear in terms of the unknown process and measurement white noise pro-
cesses vt and wt, respectively. The input vector ut is a collection of all (deterministic)
known variables, including possibly measured process noise variables and manipu-
lable process input variables. The system vector xt can be an augmented vector of
system states, possibly states in a process noise model and states in a parameter
model, e.g. random walk (or drift) models.

Furthermore, the following statistical properties are assumed

E(vt) = 0 and E(vtv
T
j ) = V δtj

E(wt) = 0 and E(wtw
T
j ) = Wδtj

where δtj =

{
1 if j = t
0 if j ̸= t

(12.9)

The linearized discrete time state space model is defined as

dxt+1 = Φtdxt +∆tdut +Ωtdvt (12.10)

dyt = Dtdxt + Edut + wt (12.11)

where dxt, dut, dvt and dyt are deviations around some vectors of variables.
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12.3 The Kalman filter algorithm

The algorithm presented is a formulation of the Extended and possibly Augmented
Kalman filter. The algorithm is formulated, step for step, such that it can be directly
implemented in a computer.

Algorithm 12.3.1 (Extended Kalman filter algorithm)
Step 0. Initial values.
Specify the apriori state vector, x̄t, and the apriori state covariance matrix, X̄t. (x̄t
and X̄t are usually given from the previous sample of this algorithm. Note that t is
discrete time.)

Step 1. Measurements model uppdate.

ȳt = gt(x̄t, ut) (12.12)

Step 2. The Kalman filter gain matrix.
Linearized measurements model matrix

Dt =
∂gt(xt,ut)

∂xt

∣∣∣
x̄t,ut

(12.13)

Kalman filter gain matrix.

Kt = X̄tD
T
t (DtX̄tD

T
t +W )−1 (12.14)

Step 3. Aposteriori state estimate.

x̂t = x̄t +Kt(yt − ȳt) (12.15)

Step 4. Apriori state uppdate.

x̄t+1 = ft(x̂t, ut) (12.16)

Define the state transition and the disturbance input matrices.

Φt =
∂ft(xt,ut)+Ωtvt

∂xt

∣∣∣
x̂t,ut

(12.17)

Ωt =
∂ft(xt,ut)+Ωtvt

∂v

∣∣∣
x̂t,ut

(12.18)

Step 5. State covariance matrices.
Aposteriori state covariance matrix.

X̂t = (I −KtDt)X̄t(I −KtDt)
T +KtWKT

t (12.19)

Apriori state covariance matrix uppdate.

X̄t+1 = ΦtX̂tΦ
T
t +ΩtV ΩT

t (12.20)

△
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Note that the matrix equation for the aposteriori state covariance matrix, Equation
(12.19), is called the stabilized implementation, because it have better numerical
properties than the other frequently used equations for X̂, e.g.

X̂t = X̄t − X̄tD
T
t (DtX̄tD

T
t +W )−1DtX̄t (12.21)

X̂t = (I −KtDt)X̄t (12.22)

The Algorithm 12.3.1 is all that is needed for the design of an Kalman filter appli-
cation. Se also the next sections for pure details about implementation. However,
for extreme accuracy of the computational results the (square root) algorithm by
Bierman (1974) should be implemented

12.3.1 Example: parameter estimation

Assume the linear (measurement) equation

yt = Etut + wt (12.23)

where yt ∈ ℜm and ut ∈ ℜr are known. The error wt ∈ ℜm is assumed to be a
zero mean white noise process. Et ∈ ℜm×r is a matrix of unknown parameters. The
problem adressed in this section is to estimate the (gain) matrix Et.

We will first write the model into a more convenient form for parameter estimation.
We have 

y1
y2
...
ym


t

=


eT1
eT2
...
eTm


t

ut =


uT e1
uT e2
...
uT em


t

=


uTt 0 · · · 0

0 uTt
. . .

...
...

...
. . . 0

0 0 · · · uTt



e1
e2
...
em


t

(12.24)

which can be written as

yt = φT
t θt (12.25)

where yt ∈ ℜm is a vector of observations, φT
t ∈ ℜm×r·m is a matrix of (regression)

known variables and θt ∈ ℜr·m is a vector of unknown parameters.

Hence, the parameter vector θt is formed from the rows in the matrix E and the
matrix φT

t is a matrix with the known (input) vector uTt on the “diagonal”. Note
that in the Multiple Input Single Output (MISO) case, we simply have φT

t = uTt
and θt = ET .

Assume that the parameter vector θt is slowly varying. A reasonable model is then
a so called random walk (or drift), i.e.

θt+1 = θt + vt (12.26)

where vt is a zero mean white noise process.

Problem

Use the Kalman filter Alorithm 12.3.1 to write an algorithm for parameter estimation
based on the models given by Equations (12.25) and (12.26). Express the parameter
estimates in terms of the apriori parameter estimate vector, i.e. θ̄t.
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12.4 Implementation

The Kalman filter matrix equations that are computed at each sample (if required)
is given by,

1. Stabilized Kalman measurement uppdate equations.

K = XDT (DXDT +W )−1 (12.27)

X̂ = (I −KD)X(I −KD)T +KWKT (12.28)

2. Time uppdate apriori covariance matrix equation.

X = ΦX̂ΦT + V (12.29)

where for simplicity X := X̄.

We will in what follows count the number of multiplications which is required for
one sample of the actual implementation and then suggest efficient implementations
of the algorithm where the number of multiplications is considerably reduced.

The stabilized Kalman measurement uppdate Equation (12.28) is implemented in the
following steps. The resulting matrix dimension and the number of multiplications
required is identified to the right of each equations.

Algorithm 12.4.1 (”Bulk” implementation)

WORK1 = I −KD (n× n) n2m

WORK2 = X WORK1T (n× n) n3

WORK3 = WORK1 WORK2 (n× n) n3

X = WORK3 +KWKT (n× n) 2n2m
Total 2n3 + 3n2m

(12.30)

△

The total number of multiplications for Equation (12.28) is then given by

2n3 + 3n2m (= 400 for n = 5 and m = 2) (12.31)

The term KWKT can be implemented more effectively as follows

WORK1 = KW (n×m) nm
WORK2 = WORK1 KT (n× n) n2m

(12.32)

The total number of multiplications is in this case given by

2n3 + 2n2m+ nm (= 360 for n = 5 and m = 2) (12.33)

Multiplications can be saved if the symmetry of the matrix terms (I −KD)X(I −
KD)T and KWKT are utilized. Only the lower or upper part of the latter terms
needs to be computed.



174 The Kalman filter algorithm for discrete time systems

Algorithm 12.4.2 (Computations of symmetrical parts only)

WORK1 = I −KD (n× n) n2m

WORK2 = X WORK1T (n× n) n3

WORK3 = WORK1 WORK2 (n× n) nn(n+1)
2

WORK1 = K W (n×m) nm

X = WORK3 +WORK1 KT (n× n) mn(n+1)
2

Total 3
2n

3 + 3
2n

2m+ 1
2n

2 + 3
2nm

(12.34)

△

The total number of multiplications is in this case given by

3

2
n3 +

3

2
n2m+

1

2
n2 +

3

2
nm (= 290 for n = 5 and m = 2) (12.35)

In general, the most efficient implementation of Equation (12.28) with respect to the
number of multiplications is probably as follows. However, both algorithms (12.4.1)
and (12.4.2) are probably better conditioned with respect to positive definiteness of
the computed covariance matrix.

Algorithm 12.4.3 (Biermans implementation)

WORK1 = XDT (n×m) n2m

X = X −K WORK1T (n× n) n2m
WORK2 = KW (n×m) nm
WORK1 = XDT −WORK2 (n×m) n2m

X = X −WORK1 KT (n× n) n2m mn(n+1)
2

Total (4n2 + n)m (52n
2 + 3

2n)m

(12.36)

△

Note that the matrix product XDT used initially in Algorithm 12.4.3 is available
from the computation of the gain matrix K. Therefore the total number of multipli-
cations by Algorithm 12.4.3 can be reduced by n2m for comparison with Algorithms
12.4.1 and 12.4.2. The total number of multiplications required to form the a pos-
teriori state covariance matrix X̂ is illustrated in the following table.

Table 1: Comparison of number of multiplications for m = 2

Algorithm Total N = 3 N = 5 Remarks

4.1 2n3 + 3n2m 108 400

4.2 3
2n

3 + 3
2n

2m+ 1
2n

2 + 3
2nm 81 290

4.3 (3n2 + n)m 64 160

4.3 Symmetrized (52n
2 + 3

2n)m 54 140

(12.37)

The a priori state covariance uppdate matrix Equation (12.29) can be directly imple-

mented with 2n3 multiplications or with n3 +nn(n+1)
2 = 3

2n
3 + 1

2n
2 if the symmetry

of the resulting product ΦX̂ΦT is utilized.
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Note that the structure of the Φ matrix should be utilized if it is sparse. For the
N = 5 and M = 2 example given in this note, only 36 multiplications are needed to
form X̄ compared to 250 (or 200 if symmetry is utilized) in the general case.

Skogn implementation: 72 + 400 + 250 = 722.

Symetrical implementation: 67 + 290 + 200 = 557.

Symetrical and structure: 67 + 290 + 36 = 393.

4.3 symmetrized and structure: 67 + 140 + 36 = 243.
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Chapter 13

Robustness in LQ and LQG
systems
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13.1 Return difference equation

The Riccati equation can be formulated in the frequency domain through the so
called return difference equation. This equation is of central importance in connec-
tion with robustness properties of the LQ controller.

Theorem 13.1.1 (return difference equation)
The Riccati equation can be written as

[I +H0(−s)]TP [I +H(s)] = P +HT
p (−s)QHp(s) (13.1)

where

G = −P−1BTR, (13.2)

H0(s) = −G(sI −A)−1B, (13.3)

Hp(s) = (sI −A)−1B. (13.4)

Proof 13.1 The proof is divided into two parts.

Part 1 The return difference equation can be written as

P − PG(sI −A)−1B −BT (−sI −AT )−1GTP

+BT (−sI −AT )−1GTPG(sI −A)−1B = P +BT (−sI −AT )−1Q(sI −A)−1B

and

−PG(sI −A)−1B −BT (−sI −AT )−1GT

+BT (−sI −AT )−1GTPG(sI −A)−1B = BT (−sI −AT )−1Q(sI −A)−1B(13.5)

Part 2 Hence, we have to prove (13.5). The algebraic Riccati equation ATR+RA−
RBP−1BTR+Q can be written as

−ATR−RA+GTPG = Q (13.6)

where we have used that G = −P−1BTR is the optimal state feedback matrix. Adding
sR and subtracting −sR to the left hand side gives

(−sI −AT )R+R(sI −A) +GTPG = Q (13.7)

Pre-multiplication with BT (−sI −AT )−1 and post-multiplication with (sI −A)−1B
gives

BTR(sI −A)−1B +BT (−sI −AT )−1RB +BT (−sI −AT )−1GTPG(sI −A)−1B

= BT (−sI −AT )−1Q(sI −A)−1B (13.8)

From G = −P−1BTR we have that BTR = −PG. This gives

−PG(sI −A)−1B −BT (−sI −AT )−1GTP +BT (−sI −AT )−1GTPG(sI −A)−1B

= BT (−sI −AT )−1Q(sI −A)−1B (13.9)

which is equivalent to (13.5). QED
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13.2 Robustness of LQ systems

Consider a single input LQ system. From the return difference equation we have
that

|1 + h0| ≥ 1 (13.10)

where the loop transfer function is h0 = −G(sI − A)−1B and G = −P−1BTR and
R is the positive solution to the ARE.

The inequality (13.10) implies that the curve h0(jω) does not enter a circle with
center (−1, 0) and radius r ≥ 1 in the complex plane. This can be shown by using
that h0(jω) = ℜeh0+jℑmh0, which gives the circle equation (ℜeh0+1)2+ℑmh20 = r2

where the radius satisfy r2 ≥ 1.

Considder the possibile values of h0(jω) along the real axis. From the inequality
(13.10) we have −(1 + h0) ≥ 1 which gives h0 ≤ −2 and from (1 + h0) ≥ 1 we have
that h0 ≥ 0. Considder that there is a multiplicative uncertainity in the system,
which results in a perturbed loop transfer function h = kh0 where k is a constant
uncertainity parameter. The perturbed system is on the stability limit if |h(jω)| = 1
and ∠h(jω) = −180◦. This gives that k = 1

|h0| .

13.2.1 Gain margin

From the above we have the condition h0 ≥ 0 which gives k ≤ ∞ or k = ∞ if only
the negative real axis is considered. Recall that the gain margin (GM) is the factor
by which the loop gain may be increased before the closed loop system becomes
unstable. hence, we have a gain margin

GM = k = ∞ (13.11)

13.2.2 Gain reduction margin

The condition h0 ≤ −2 gives k ≤ 1
2 . Hence, the loop gain may be reduced by a

factor

0 ≤ k ≤ 1

2
(13.12)

before the system becomes unstable. This is defined as the Gain reduction margin
property of the LQ regulator.

Example 13.1 (Gain margin with LQ regulator)
Considder that we have a model

ẋm = xm + u, (13.13)

ym = xm, (13.14)

for a real plant

ẋ = x+mu, (13.15)

y = x. (13.16)
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The difference between the plant and the model is only the parameter m. Considder
now that an LQ regulator is designed based on the model (13.13) and (13.14) and
applied to the plant (13.15) and (13.16). The problem which is adressed is now to
find out how large perturbations in the parameter m we can tolerate before the system
becomes unstable.

The LQ performance index is

J =

∫ ∞

0
(qyT y + pu2)dt. (13.17)

The solution to the algebraic Riccati equation 2ar − b2

p r
2 + q = 0 and the optimal

state feedback are

r = p(1 +

√
1 +

q

p
), (13.18)

g = −1

p
r = −(1 +

√
1 +

q

p
). (13.19)

The control to the plant is chosen as u = gx. The closed loop system is then described
by ẋ = (a+mg)x. The eigenvalue of the closed loop system is λ = a+mg and for
stability we must have that

λ = 1 +mg = 1−m(1 +

√
1 +

q

p
) ≤ 0. (13.20)

This gives that

1

1 +
√

1 + q
p

≤ m. (13.21)

Considder now the two cases q
p = 0 and q

p → ∞.

q
p = 0 ⇒ 1

2 ≤ m ≤ ∞
q
p → ∞ ⇒ 0 ≤ m ≤ ∞ (13.22)

This means that the LQ system is guaranteed to be stable if

1

2
≤ m ≤ ∞ (13.23)

irrespective of the choice of weight parameters q ≥ 0 and p > 0.

13.3 Robustness of LQG systems

The results in the paper by Doyle (1978), with title Guaranteed Margins for LQG
regulators and abstract There are none are reviewed and worked out in the following
example.
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Example 13.2 (LQG example, Doyle (1978).)
Consider that we have a model

ẋ =

A︷ ︸︸ ︷[
1 1
0 1

]
x+

B︷︸︸︷[
0
1

]
u+

C︷︸︸︷[
1
1

]
v (13.24)

y =

D︷ ︸︸ ︷[
1 0

]
x+ w (13.25)

where x =
[
x1 x2

]T
is the state, v and w is Gaussian white noise with variance

E(v2) = V = σ > 0 and E(w2) = W = 1, for the (real) process

ẋ = Ax+Bpu+ Cv (13.26)

y = Dx+ w (13.27)

where

Bp =

[
0
m

]
, (13.28)

and where m is an unknown parameter, but assumed to be close to m = 1.

An infinite horizon LQ controller and a Kalman filter are constructed based on the
process model (13.24) and (13.25), and applied to the plant (13.26) and (13.27).

Let the LQ performance index by

J =

∫ ∞

0
(qyT y + uTPu)dt =

∫ ∞

0
(xTQx+ uTPu)dt, (13.29)

where

Q = qDDT = q

[
1 1
1 1

]
, q > 0, (13.30)

and P = 1. The LQ controller minimizing (13.29) is given by

u = Gx̂, (13.31)

where

G =
[
−f −f

]
, (13.32)

and where

f = 2 +
√
4 + q. (13.33)

The Kalman filter is

˙̂x = Ax̂+Bu+K(y −Dx), . (13.34)

where the Kalman filter gain is

K =

[
d
d

]
, (13.35)
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and where

d = 2 +
√
4 + σ. (13.36)

The closed loop system, determined by applying the control (13.31) and (13.34) to
the plant (13.26) and (13.27) is given by

[
ẋ
˙̂x

]
=

Acl︷ ︸︸ ︷[
A BpG

KD A+BG−KD

] [
x
x̂

]
, (13.37)

with

Acl =


1 1 0 0
0 1 −mf −mf
d 0 1− d 1
d 0 −d− f 1− f

 . (13.38)

The stability of the LQG system is defined by the eigenvalues of matrix Acl. The
characteristic polynomial is (use e.g. MAPLE to show this)∣∣ λI −Acl

∣∣ = λ4 + c3λ
3 + c2λ

2 + c1λ+ c0, (13.39)

where the polynomial coefficients are

c0 = 1 + (1−m)df, (13.40)

c1 = d+ f − 4 + 2(m− 1)df, (13.41)

c2 = df − 2f − 2d+ 6, (13.42)

c3 = f + d− 4. (13.43)

From Rouths stability criterion we have that a necessary (but not sufficient) condition
for stability is that all coefficients (1, c3, c2, c1, c0) in the characteristic equation is
positive. The nominal LQG system with m = 1 is stable so we know that c3 > 0 and
c2 > 0. Note also that only c1 and c0 is dependent upon the unknown parameter m.

A necessary condition for stability is then that

c0 = 1 + (1−m)df > 0, (13.44)

c1 = d+ f − 4 + 2(m− 1)df > 0. (13.45)

Obviously, this is true for m = 1. This is also true if

mlow < m < mupp. (13.46)

where

mlow = 1−∆mlow, ∆mlow =
d+ f − 4

2df
=

√
4 + q +

√
4 + σ

2df
, . (13.47)

mupp = 1 +∆mupp, ∆mupp =
1

df
.. (13.48)
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Note that both d and f are positive and that d + f − 4 =
√
4 + q +

√
4 + σ > 0.

Hence, there exist m ̸= 1 for which the necessary conditions c0 > 0 and c1 > 0 are
satisfied, We have assumed that q and σ are finite. However, the problem is that
mlow → 1 and mupp → 1 when q → ∞ and/or σ → ∞. This means that the margins
(∆mlow and ∆mupp) can be made arbitrarily small for sufficiently large parameters
q and σ. Note that ∆mlow → 0 and ∆mupp → 0 when q → ∞ and/or σ → ∞.

Consider a particular LQG design with parameters q = σ = 12. The necessary
conditions for stability are in this case satisfied if

0.889 < m < 1.027. (13.49)

It can be shown numerically that

0.9105 < m < 1.027 (13.50)

is both necessary and sufficient for stability of the particular LQG system.

Hence the margins should be checked for each specific LQG design

13.4 Exercises

Exercise 13.1 (Gain margin in LQ system) Considder a SISO plant with one
state and model parameters A = −1, B = 1. Assume that we have an multiplicative
uncertainity in the real plant input matrix. I.e. the real plant is ẋ = Ax+Bpu with
Bp = mB where m is the multiplicative uncertainity. Show that the closed loop LQ
system have gain margin

− 1√
1 + q

p − 1
≤ m. (13.51)
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Chapter 24

Eksempel p̊a bruk av ulineær
dekobling

Example 24.1 (Regulering av ulineært SISO system)
Gitt en prosess beskrevet/modellert med

ẋ = f(x, u) (24.1)

der

f(x, u) = − u

(x+ 1)2
. (24.2)

Vi innfører n̊a et ekvivalent p̊adrag ũ slik at

ẋ = f(x, u) = ũ. (24.3)

Dette betyr at prosessen er en ren integrator sett fra det ekvivalente p̊adraget ũ.
Prosessens p̊adrag u kan n̊a bestemmes ved å løse f(x, u) = ũ med hensyn p̊a u.
Dvs. vi løser

− u

(x+ 1)2
= ũ (24.4)

mht u som gir

u = −(x+ 1)2ũ. (24.5)

Ligning (24.5) er å betrakte som en kompensator som plasseres før prosessen. Det
vil være tilstrekkelig med en proporsjonal-regulator for å generere det ekvivalente
p̊adraget ũ og for å regulere prosessen ẋ = ũ. Dvs.

ũ = Kp(x0 − x) (24.6)

der x0 er et spesifisert settpunkt og der Kp er en konstant. Vi ser forøvrig at vi m̊a
kreve at KP > 0 for at det lukkede systemet skal være stabilt. Kp kan for eksempel
velges slik at man f̊ar en spesifisert tidskonstant T = 1

Kp
etter en settpunktsendring

i x0.
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Example 24.2 (Regulering av ulineært 2× 2 system)
Anta at en reaksjon

sA
k→ B (24.7)

foreg̊ar i en isoterm tank med ideell omrøring der k = 1 er reaksjons hastighets
konstant fra stoff A til stoff B og s = 2.

Definer u1 som massestrømen inn til rektoren og u2 som sammensetningen av stoff
A i u1. Likeledes defineres x1 som sammensetningen av stoff A i reaktoren og x2 som
sammensetningen av stoff B i reaktoren. Prosessen og reaksjonen er kontinuerlig,
dvs. at det er en kontinuerlig gjennomstrømning i reaktoren.

En modell for prosessen kan bestemmes p̊a følgende m̊ate. Vi setter opp komponent
massebalanser for stoffene A og B.

d

dt
(V x1) = u1u2 − u1x1 − skV x21, (24.8)

d

dt
(V x2) = −u1x2 + kV x21. (24.9)

der V = 1 er reaktorens tank volum som antas konstant. Dette kan videre skrives
slik

ẋ1 =
u1
V

(u2 − x1)− skx21, (24.10)

ẋ2 = −u1
V

x2 + kx21. (24.11)

Denne prosessen er beskrevet i Fjeld (1971) s. 32. men uten utledning.

Vi innfører ekvivalente p̊adrag ũ1 og ũ2 slik at

ẋ1 = ũ1, (24.12)

ẋ2 = ũ2. (24.13)

Dette betyr at prosessens p̊adrag kan bestemmes ved å løse

u1
V

(u2 − x1)− skx21 = ũ1 (24.14)

−u1
V

x2 + kx21 = ũ2 (24.15)

med hensyn p̊a u1 og u2. Dette gir

u1 = − V

x2
(ũ2 − kx21) (24.16)

u2 = x1 +
V

u1
(ũ1 + skx21) (24.17)

Reguleringssløyfen kan n̊a lukkes med for eksempel to enkeltsløyfe proporsjonal-regulatorer
(PI eller PID regulatorer kan ogs̊a benyttes). Dvs.

ũ1 = Kp1(x10 − x1) (24.18)

ũ2 = Kp2(x20 − x1) (24.19)
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der x10 og x20 er spesifiserte settpunkt og Kp1 og Kp2 er positive konstanter.

For bruk ved analyse og simulering s̊a vil vi n̊a presentere stasjonærverdiene til
reaktormodellen (24.10) og (24.11). Fra (24.10) har vi at

ẋs1 =
us1
V

(us2 − xs1)− sk(xs1)
2 = 0, (24.20)

ẋs2 = −us1
V

xs2 + k(xs1)
2 = 0. (24.21)

dette gir

xs1 =
−us1 +

√
(us1)

2 + 4skV us1u
s
2

2skV
, (24.22)

xs2 =
kV (xs1)

2

us1
. (24.23)

Dersom de stasjonære p̊adragene er gitt ved us1 = 10 og us2 = 1 har vi at de stasjonære
tilstandene er gitt ved xs1 = 0.8541 og xs2 = 0.0729. Det er disse stasjonærverdiene
som er benyttet ved simulering av reaktorreguleringssystemet.

Simuleringsresultater for prosessen regulert med ulineær dekobling er vist i figur
24.1. For å kunne sammenligne viser vi simuleringsresultater for samme prosess
regulert med to enkeltsløyfe PI regulatorer i figur 24.2.

Av figur 24.1 ser vi at responsene i x1 og x2 er dekoblet. Det vil for eksempel si at et
settpunktsendring i x10 ikke har innvirkning p̊a responsen i x2. Dette er ikke tilfellet
dersom prosessen reguleres med to enkeltsløyfe PI regulatorer som vist i figur 24.2.

0 1 2 3 4
9.5

10

10.5

11
u1: nonlinear decoupling

0 1 2 3 4
0.95

0.96

0.97

0.98

0.99

1

1.01
u2: nonlinear decoupling

0 1 2 3 4
0.83

0.84

0.85

0.86

x1

Time [sec]
0 1 2 3 4

0.065

0.07

0.075

0.08
x2

Time [sec]

x20

x10

Figure 24.1: Figuren viser simulering av prosessen i eksempel 24.2 regulert med
ulineær dekobling. Settpunktene x10 og x20 er stiplet. P regulatorene i (24.18) og
(24.19) har parametre Kp1 = Kp2 = 5. Figuren er generert av MATLAB scriptet
nl ex2.m.
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Figure 24.2: Figuren viser simulering av prosessen i eksempel 24.2 regulert med to
enkeltsløyfe PI regulatorer. Settpunktene x10 og x20 er stiplet. Begge PI regula-
torene har parametreKp = 10 og Ti = 0.1. Figuren er generert av MATLAB scriptet
nl ex2 pi.m.
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Appendix A

Linear Algebra and Matrix
Calculus

A.1 Trace of a matrix

The trace of a n×m matrix A is defined as the sum of the diagonal elements of the
matrix, i.e.

tr(A) =
n∑

i=1

aii (A.1)

We have the following trace operations on two matrices A and B of apropriate
dimensions

tr(AT ) = tr(A) (A.2)

tr(ABT ) = tr(ATB) = tr(BTA) = tr(BAT ) (A.3)

tr(AB) = tr(BA) = tr(BTAT ) = tr(ATBT ) (A.4)

tr(A±B) = tr(A)± tr(B) (A.5)

A.2 Gradient matrices

∂
∂X tr[X] = I (A.6)
∂
∂X tr[AX] = AT (A.7)
∂
∂X tr[AXT ] = A (A.8)
∂
∂X tr[AXB] = ATBT (A.9)
∂
∂X tr[AXTB] = BA (A.10)
∂
∂X tr[XX] = 2XT (A.11)
∂
∂X tr[XXT ] = 2X (A.12)
∂
∂X tr[Xn] = n(Xn−1)T (A.13)
∂
∂X tr[AXBX] = ATXTBT +BTXTAT (A.14)
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∂
∂X tr[eAXB] = (BeAXBA)T (A.15)

∂

∂X
tr[XAXT ] = 2XA, if A = AT (A.16)

∂
∂XT tr[AX] = A (A.17)

∂
∂XT tr[AXT ] = AT (A.18)

∂
∂XT tr[AXB] = BA (A.19)

∂
∂XT tr[AXTB] = ATBT (A.20)

∂
∂XT tr[eAXB] = BeAXBA (A.21)

A.3 Derivatives of vector and quadratic form

The derivative of a vector with respect to a vector is a matrix. We have the following
identities:

∂x
∂xT = I (A.22)

∂
∂x (xTQ) = Q (A.23)
∂
∂x (Qx) = QT (A.24)

(A.25)

The derivative of a scalar with respect to a vector is a vector. We have the following
identities:

∂
∂x (yTx) = y (A.26)
∂
∂x (xTx) = 2x (A.27)
∂
∂x (xTQx) = Qx+QTx (A.28)
∂
∂x (yTQx) = QT y (A.29)

Note that if Q is symmetric then

∂

∂x
(xTQx) = Qx+QTx = 2Qx. (A.30)

A.4 Matrix norms

The most frequently used matrix norm in numerical analysis and linear algebra is
the Frobenius norm (the F-norm).

The trace of the matrix product ATA is related to the Frobenius norm of A as
follows

∥A∥2F = tr(ATA), (A.31)
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where A ∈ RN×m.

A frequently used notation and expression for the matrix Frobenius norm is also

∥A∥2F = (
N∑
i=1

m∑
j=1

aij)
1
2 , (A.32)

i.e. equal the square root of the sum of all elements.

An important property of the Frobenius norm is that it is invariant with respect to
orthogonal transformation. Assume given two orthogonal matrices Q and Z with
appropriate dimensions we have that

∥A∥F = ∥QAZ∥F . (A.33)

A.5 Linearization

Given a vector function f(x) ∈ Rm where x ∈ Rn. The derivative of the vector f
with respect to the row vector xT is defined as

∂f

∂xT
=


∂f1
∂x1

∂f1
∂x2

· · · ∂f1
∂xn

∂f2
∂x1

∂f2
∂x2

· · · ∂f2
∂xn

...
...

. . .
...

∂fm
∂x1

∂fm
∂x2

· · · ∂fm
∂xn

 ∈ Rm×n (A.34)

Given a non-linear differentiable state space model

ẋ = f(x, u), (A.35)

y = g(x). (A.36)

A linearized model around the stationary points x0 and u0 is

˙δx = Ax+Bu, (A.37)

δy = Dx, (A.38)

where

A =
∂f

∂xT
|x0,u0 , (A.39)

B =
∂f

∂uT
|x0,u0 , (A.40)

D =
∂g

∂xT
|x0,u0 , (A.41)

and where

x = x− x0, (A.42)

u = u− u0. (A.43)
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A.6 Kronecer product matrices

Given a matrix X ∈ RN×r. Let Im be the (m×m) identity matrix. Then

(X ⊗ Im)T = XT ⊗ Im, (A.44)

(Im ⊗X)T = Im ⊗XT . (A.45)
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