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1 Problem formulation

Given a proces model

xk+1 = Axk + Buk + v, (1)
yk = Dxk + w, (2)

where xk ∈ Rn is the state vector, uk ∈ Rr is the control input vector, yk ∈ Rm is the
output (measurement) vector, and A, B and D are known system matrices of appropriate
dimensions. The disturbances v and w are both unknown, i.e., v is an unknown constant
or slowly varying process disturbance, and w are an unknown constant or slowly varying
measurements noise vector.

We will study the LQ optimal controller subject to the following performance index,

Ji =
1
2
xT

NSxN +
1
2

N−1∑

k=i

((yk − r)T Q(yk − r) + ∆uT
k P∆uk), (3)

where ∆uk = uk−uk−1 and r is a reference signal and S, Q and P are symmetric positive
semidefinite weighting matrices of appropriate dimensions. For large or infinite prediction
horizon N or when S is chosen as the solution to Riccati equation of the problem, then
we use the index

Ji =
1
2

∞∑

k=i

((yk − r)T Q(yk − r) + ∆uT
k P∆uk). (4)

2 Problem solution

In order to solve the LQ optimal control problem we need a model which is independent
of the unknown disturbances. For the sake of generality we are focusing on state space
modeling.

From the state Equation (1) we have

∆xk+1 = A∆xk + B∆uk, (5)
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where ∆xk = xk − xk−1. From the measurement equation (2) we have

yk = yk−1 + D∆xk. (6)

Augmenting (5) with (6) gives the state space model
[

∆xk+1

yk

]
=

[
A 0n×m

D Im×m

] [
∆xk

yk−1

]
+

[
B
0m×r

]
∆uk, (7)

yk =
[

D Im×m

] [
∆xk

yk−1

]
. (8)

The performance index (3) with r = 0 and the state space model (7) and (8) are defining a
standard LQ control problem. If r is a non-zero constant reference then the measurements
equation (9) can be written as

yk − r = yk−1 − r + D∆xk. (9)

The state and output equations (7) and (8) can then be rewritten as

x̃k+1︷ ︸︸ ︷[
∆xk+1

yk − r

]
=

Ã︷ ︸︸ ︷[
A 0n×m

D Im×m

]
x̃k︷ ︸︸ ︷[

∆xk

yk−1 − r

]
+

B̃︷ ︸︸ ︷[
B
0m×r

]
∆uk, (10)

ỹk︷ ︸︸ ︷
yk − r =

D̃︷ ︸︸ ︷[
D Im×m

]
x̃k︷ ︸︸ ︷[

∆xk

yk−1 − r

]
. (11)

Hence, we have a strictly proper state space model of the form

x̃k+1 = Ãx̃k + B̃∆uk, (12)
ỹk = D̃x̃k (13)

The state space model (10) and (11) with the performance index (3) defines a standard
LQ optimal control problem. The optimal control is of the form

∆uk =
[

G1 G2

] [
∆xk

yk−1 − r

]
, (14)

which can be rewritten as

uk = uk−1 + G1∆xk + G2(yk−1 − r). (15)

The LQ optimal controller (14) gives y = r in steady state since the closed loop system is
stable due to the properties of the LQ optimal controller. The states are seldom measured
in practice. In this case we can use a state observer to define the deviation state ∆xk.
However, another solution is to define ∆xk in terms of some past and known outputs
. . . , yk−1, yk and some known inputs . . . , uk−1 and the model matrices A, B and D.
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3 State observer for the state deviation

A common solution to the problem of estimating the state, xk, in a model of the form (1)
and (2) in which the noise is colored, is to include a random walk (integrator) in order to
estimate the non-zero part of the noise, v̄k in addition to the state estimate x̄k. This is
necessary in order for the innovations to become white. One can thereafter form the state
deviation ∆x̄k = x̄k − x̄k−1, which is needed in the control algorithm. However, another
more simple solution in this situation is to design an observer for the deviation model (5)
and (6). This gives a state observer for ∆x̄k of the form

∆x̄k+1 = A∆x̄k + B∆uk + K(yk − yk−1 −D∆x̄k), (16)

where the initial estimate ∆x̄0 should be specified. A natural choice is ∆x̄0 = 0.

4 Connection with the PI controller

A conventional PI-controller can be written as

u = Kp
1 + Tis

Tis
(r − y) = Kp(r − y) +

Kp

Ti

1
s
(r − y). (17)

Defining the PI-controller state, z, as

z =
1
s
(r − y). (18)

Hence, the PI controller can in continuous time be written as

ż = r − y, (19)

u = Kp(r − y) +
Kp

Ti
z. (20)

A discrete formulation of the PI controller is then

zk+1 − zk = h(r − yk), (21)

uk = Kp(r − yk) +
Kp

Ti
zk, (22)

where h is the sampling interval. A deviation formulation of the PI controller is then
found as follows

uk − uk−1 = Kp(r − yk) +
Kp

Ti
zk − (Kp(r − yk−1) +

Kp

Ti
zk−1)

= −Kp(yk − yk−1) +
Kp

Ti
(zk − zk−1). (23)

From (21) we have that zk − zk−1 = h(r − yk−1). Substituting this into (23) gives

uk = uk−1 + G1(yk − yk−1) + G2(yk−1 − r). (24)
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where

G1 = −Kp, G2 = −Kp

Ti
h. (25)

Furthermore, using that y = Dx + w gives

uk = uk−1 + G1D∆xk + G2(yk−1 − r). (26)

The above discussion shows that the PI controller is exactly of the same structure as the
LQ optimal controller (15). The difference is that the optimal controller takes feedback
from the deviation state vector ∆xk = xk−xk−1 while the PI-controller only uses feedback
from the output deviation ∆yk = D∆xk.

5 Numerical examples

Example 5.1 (Isothermal chemical reactor)
A chemical isothermal reactor can be modeled as

ẋ1 =
u1

V
(u2 − x1)− skx2

1, (27)

ẋ2 = −u1

V
x2 + kx2

1, (28)

where V = 1, k = 1 and s = 2. The steady state control variables us
1 = 10 and us

2 = 1
gives the steady states xs

1 = 0.8541 and xs
2 = 0.0729. Linearizing around steady state gives

the linear model

∆ẋ = Ac∆x + Bc∆u, (29)

where ∆x = x− xs and ∆u = u− us and

Ac =

[
∂f1

∂x1

∂f1

∂x2
∂f2

∂x1

∂f2

∂x2

]

xs,us

=

[
−us

1
V − 2skxs

1 0
2kx1 −us

1
V

]
=

[
13.4164 0
1.7082 −10.0

]
, (30)

Bc =

[
∂f1

∂u1

∂f1

∂u2
∂f2

∂u1

∂f2

∂u2

]

xs,us

=

[
us
2

V
us
1

V

−xs
2

V 0

]
=

[
1.0 10.0

−0.0729 0

]
. (31)

A discrete time model is obtained by using a zero order hold on the input and a sampling
interval h = 0.01, i.e.,

xk+1 = Axk + Buk + v, (32)
yk = Dxk, (33)

where

A = eAch =
[

0.8744 0
0.0152 0.9048

]
, (34)
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B = A−1
c (eAch − I)Bc =

[
0.0094 0.0936

−0.0006 0.0008

]
, (35)

D =
[

1 0
0 1

]
, v = xs −Axs −Bus. (36)

Choosing an LQ criterion

Ji =
1
2

N∑

k=i

((yk − r)T Q(yk − r) + ∆uT
k P∆uk), (37)

with

P =
[

1 0
0 100

]
, Q =

[
50 0
0 100

]
, (38)

gives the LQ-optimal control

uk = uk−1 + G1∆xk + G2(yk−1 − r), (39)

where

G1 =
[ −15.7253 55.7233

−1.9714 −6.5884

]
, G2 =

[ −4.7639 6.2149
−0.3639 −0.7540

]
. (40)

Simulation results after changes in the reference signal r are illustrated in Figure 1.

Example 5.2 (Van de Vusse chemical reactor)
A chemical isothermal reactor (Van de Vusse) is studied in this example. The relationship
from the feed flow rate u into the reactor to the concentration of the product y at the outlet
of the reactor is modeled by the following non-linear state space model.

ẋ1 = −k1x1 − k3x
2
1 + (v − x1)u, (41)

ẋ2 = k1x1 − k2x2 − x2u, (42)
y = x2, (43)

where the reaction rate coefficients are given by k1 = 50, k2 = 100, k3 = 10. The concen-
tration of the by-product into the reactor, v, is treated as an unknown constant or slowly
varying disturbance with nominal value vs = 10. Choosing a steady state control us = 25
gives the steady states xs

1 = 2.5 and ys = xs
2 = 1.

A linearized model around steady state is given by

∆ẋ = Ac∆x + Bc∆u, (44)

where ∆x = x− xs and ∆u = u− us and

Ac =

[
∂f1

∂x1

∂f1

∂x2
∂f2

∂x1

∂f2

∂x2

]

xs,us

=
[ −k1 − 2k3x

s
1 − us 0

k1 −k2 − u

]
=

[ −125 0
50 −125

]
, (45)
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Figure 1: Simulation of the chemical reactor in Example 5.1 with LQ-optimal control.
This figure is generated by the MATLAB file dlq ex4 du.m.

Bc =
[ ∂f1

∂u
∂f2

∂u

]

xs,us

=
[

vs − xs
1

−xs
2

]
=

[
7.5
−1

]
. (46)

A discrete time model is obtained by using a zero order hold on the input and a sampling
interval h = 0.002, i.e.,

xk+1 = Axk + Buk + v, (47)
yk = Dxk, (48)

where

A = eAch =
[

0.7788 0
0.0779 0.7788

]
, (49)

B = A−1
c (eAch − I)Bc =

[
0.0133

−0.0011

]
, (50)

D =
[

0 1
]
, v = xs −Axs −Bus + C(v − vs). (51)

Choosing an LQ criterion

Ji =
1
2

∞∑

k=i

(Q(yk − r)2 + P∆u2
k), (52)
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with

P = 1, Q = 500, (53)

gives the LQ-optimal control

uk = uk−1 + G1∆xk + G2(yk−1 − r), (54)

where

G1 =
[ −23.4261 −84.5791

]
, G2 = −20.0581. (55)

Simulation results after changes in the reference signal r are illustrated in Figure 2.
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Figure 2: Simulation of the chemical reactor in Example 5.2 with LQ-optimal control.
This figure is generated by the MATLAB file dlq ex3 du.m.

Example 5.3 (Distillation column)
One advantage of the presented LQ optimal control is that the control is designed in discrete
time. Continuous processes with slow dominant dynamics are often controlled with a
digital/discrete controller. If the sampling time is large then a continuous time controller
design may give poor results when used as a discrete controller. We will here illustrate the
simple discrete time LQ optimal control design for a distillation column.

Consider a distillation column with eight trays. Let the control variable u1 = R be the
reflux to the column and u2 = V be the flow rate of vapor in the column. The composition
of the top product x8 = xD and the composition of the bottom product x1 = xB are treated
as measured output variables. The feed flow rate F and the composition xF of the light
product in F are both treated as unknown constant or slowly varying disturbances.
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The continuous non-linear model with n = 8 states is first linearized around the steady
state operating point Rs = 2, V s = 2.5, F s = 1 and xs

F = 0.5. This gives a continuous
time linear model of the form

∆̇x = Ac∆x + Bc∆u + Cc∆v, (56)
∆y = D∆x. (57)

This model is then discretized with a sample interval of h = 5 [min]. This gives a discrete
time model of the form

xk+1 = Axk + Buk + vk, (58)
yk = Dxk + wk. (59)

Choosing an LQ criterion

Ji =
1
2

N∑

k=i

((yk − r)T Q(yk − r) + ∆uT
k P∆uk), (60)

with

P =
[

1 0
0 1

]
, Q = 2500

[
1 0
0 1

]
, (61)

gives the LQ-optimal control

uk = uk−1 + G1∆xk + G2(yk−1 − r), (62)

where

G1 =
[

12.8099 0.9303 0.3961 −0.3187 −1.5158 −3.2992 −6.3394 −50.2082
30.3424 2.2003 1.4407 0.5590 −0.6629 −2.0994 −4.1887 −30.6734

]
,(63)

G2 =
[

10.0833 −29.5242
24.6664 −17.1829

]
. (64)

The linear controller (62)-(64) on deviation form is in this example used to control the
non-linear distillation column model with eight states. If the state vector is not available,
then we may use a state observer or compute an expression for ∆xk from some past
inputs and outputs, e.g. as in the Extende Model Predictive Control (EMPC) algorithm.
Simulation results after changes in the reference signal r are illustrated in Figure 3.
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Figure 3: Simulation of the chemical reactor in Example 5.2 with LQ-optimal control.
This figure is generated by the MATLAB file main kolreg lq.m.

5.1 MATLAB script for computation

function [G1,G2]=dlqdu_pi(A,B,D,Q,Rw);
% DLQDU_PI
% [G1,G2]=dlqdu_pi(A,B,D,Q,R);
% Purpose
% Compute LQ-optimal control feedback matrices G1 and G2 for
% the controller
% u=u+G1*(x-x_old)+G2*(y_old-r);
% On input
% A,B,D - discrete state space model matrices.
% Q - Wheigting matrix for the output vector y_k.
% R - Weighting matrix for the control deviation vector, Delta u_k=u_k-u_(k-1).

%% Make augmented state space model for LQ-design.
nx=size(A,1); nu=size(B,2); ny=size(D,1);
At=[A,zeros(nx,ny);D,eye(ny,ny)];Bt=[B;zeros(ny,nu)];Dt=[D,eye(ny,ny)];
Qt=Dt’*Q*Dt;

%% Solve Riccati-equation and compute feedback matrix.
[K,Rr]=dlqr(At,Bt,Qt,Rw);
G=-K;
G1=G(:,1:nx); G2=G(:,nx+1:nx+ny);
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