Master study IIA EIK University of South-Eastern Norway DDiR, October 14, 2022

IIAV3017 Advanced Control with Implementation

Exercise 7

Task 1: Discretization

Work through Exercises 26.1 and 26.2 in the Lecture Notes: Obsolute

Task 2 2: Discrete LQ optimal control

Work through Example 5.1 in the Lecture notes., i.e. compute

- The solutions of the Riccati equation: R_0 , R_1 , R_2 , R_3 and R_4 .
- The feedback matrices: G_0 , G_1 , G_2 , G_3 and G_4 .
- the optimal control: u_0 , u_1 , u_2 , u_3 and u_4 .
- The states : x_1, x_2, x_3, x_4 and x_5 .
- Simulate and plot the state and controls x_k , u_k .
- Plot the $R_{2,2}(k)$ element in R_k .

It is recommended that you first compute by hand and thereby write a MAT-LAB script for the computations.

Task 3: Discrete LQ-control

Given a system

$$x_{k+1} = ax_k + bu_k, \tag{1}$$

$$y_k = x_k. (2)$$

and the following objective function

$$J_i = \frac{1}{2}sy_N^2 + \frac{1}{2}\sum_{k=i}^{N-1}(qy_k^2 + pu_k^2).$$
(3)

a) Show that the optimal control is given by

$$u_k = g_k x_k, \tag{4}$$

$$g_k = -\frac{abr_{k+1}}{p+b^2r_{k+1}},$$
 (5)

where r_{k+1} is defined by the discrete time Riccati equation

$$r_k = q + a^2 r_{k+1} - \frac{a^2 b^2 r_{k+1}^2}{p + b^2 r_{k+1}},$$
(6)

$$r_N = s. (7)$$

Tips: take the general matrix Riccati equation as the starting point and substitue the scalar system parameters a and b and the criterion parameters q, p and s..

- b) Use the numerical values a = 0.9, b = 0.5, q = 2, p = 1 and s = 2. Put N = 10, i = 1 and compute
 - The optimal controls $u_k, k = 1, \ldots, 9$.
 - the optimal outputs y_k , $k = 1, \ldots, 10$.
 - The solution of the Riccati equation r_k , $k = 1, \ldots, 10$.
 - The feedback parameters, g_k , $k = 1, \ldots, 9$.

This is most simply performed by using MATLAB. Plot the results with time.

Tips: se Example 9.1 for a solution sketch.