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SCEV3006 Advanced Control with Implemen-
tation

Exercise 2b

Task 1

Given the system (Maciejowski (1989) p. 46) described by
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a) Find the pole polynomial π(s) and the system poles.

b) Find the system zero polynomial ρ(s) and the system zeroes.

c) Compute the zeroes of the system by using MATLAB.

� define the system by use of the MATLAB function tf.

� compute the zeroes by use of the MATLAB function tzero.

Task 2

Given the system (Kailath (1980) s. 446) described by
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a) Find the pole polynomial π(s) and the system poles.

b) Find the system zero polynomial ρ(s) and the system zeroes.

c) Compute the zeroes of the system by using MATLAB.

� define the system by use of the MATLAB function tf.

� compute the zeroes by use of the MATLAB function tzero.
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Task 3

Given a system described on state space form with the matrices

A = −1 B =
[
1 2

]
D =

[
1
2

]
E =

[
−1 0
0 −1

]
(3)

Find the transmission zeroes of the system by use of the generalized eigenvalue
method.

Task 4

Assume given the system A = −1, B = 1, D = 1 and E = e. For which values
of e has the system a zero ore zeroes? For which values of e is the system a
non-minimum-phase system.

Task 5

We will in this exercise take the system in Task 1 into consideration.

a) What is the natural rank (the maximal rank) of the transfer matrix H(s).

b) It can be shown that the transfer matrix to the system in task 1 has a zero
s = z where z is a scalar number. Put s = z and evaluate the transfer
function H(s = z), i.e., this will result in a matrix H(s = z) with constant
numbers.

c) What is the rank of the transfer matrix substituted for s = z, i.e., compute
rang(H(z)).

d) Find that control uz which gives H(z)uz = 0. Tips: The control uz can be
computed trough an Singular Value decomposition (SVD) of H(z).
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