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Exercise 2b

Task 1

Pole polynomial and system poles

The pole polynomial is given by the least common denominator for all sub
determinants of all orders of the system transfer matrix. We note that the
system has r = 2 inputs and m = 3 outputs. The system transfer matrix H(s)
has therefore the maximal rank rH = 2. For this system we have both 1st order
and 2nd order sub determinants. The sub determinants of 1st order is identic
with the six elements in the transfer matrix. Furthermore, we have three 2nd
order sub determinants. These are as follows

H1
1,2(s) =

2s2 − s− 8 + s2 + s− 4

(s2 + 3s+ 2)2
=

3(s+ 2)(s− 2)

(s+ 2)2(s+ 1)2
=

3(s− 2)

(s+ 2)(s+ 1)2
, (1)

H2
1,3(s) =

2s− 4 + s− 2

(s2 + 3s+ 2)(s+ 1)
=

3(s− 2)

(s+ 2)(s+ 1)2
, (2)

H3
2,3(s) =

(s2 + s− 4)(2s− 4)− (s− 2)(2s2 − s− 8)

(s2 + 3s+ 2)(s+ 1)
=

3s(s− 2)

(s+ 2)(s+ 1)2
. (3)

Note that super script 1, 2 and 3 in the notations H1
1,2(s), H

2
1,3(s) and H3

2,3(s)
denotes sub determinant one, two and three. Sub script (1, 2) means that sub
determinant H1

1,2(s) is computed from the sub matrix formed by using row
one and row two in the transfer matrix. Sub script (1, 3) means that sub
determinant H1

1,3(s) is computed from the sub matrix formed by using row
one and row three in the transfer matrix. Sub script (2, 3) means that sub
determinant H1

2,3(s) is computed from the sub matrix formed by using row two
and row three in the transfer matrix.
We construct a common denominator from the 1st and the 2nd order determi-
nants. This gives the pole polynomial:

π(s) = (s+ 1)2(s+ 2). (4)

The system poles are then given by the solution of π(s) = 0, i.e., the system
have three poles s1 = −1, s2 = −1 og s3 = −2.
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Zero polynomial and system zeroes

The zero polynomial is found as the largest common numerator (divisor) to all
sub determinants of order equal to the natural rank, rH = min(m, r), of the
transfer matrix H(s), in this case the sub determinants of 2nd order, supposed
they are justified such that they have the pole polynomial as denominator.
As we see, the sub determinants H1

1,2(s), H2
1,3(s) and H3

2,3(s) have the pole
polynomial π(s) as denominator. The zero polynomial is therefore given by

ρ(s) = s− 2. (5)

The system have one transmission zero at s0 = 2 which is given by ρ(s) = 0.
We note that system is a non-minimum-phase system.

Task 2

The determinant (of 2. order) to the transfer matrix is

det(H(s)) =
−s2(s+ 1)2 + s2(s+ 1)4

(s+ 1)4(s+ 2)4
=

s2(s+ 1)2(−1 + (s+ 1)2)

(s+ 1)4(s+ 2)4
(6)

=
s3(s+ 1)2(s+ 2)

(s+ 1)4(s+ 2)4
=

s3

(s+ 1)2(s+ 2)3
. (7)

Pole polynomial and poles

The largest common divisor (for the numerators) for the underdeterminants of
1st order (the elements in H(s)) and the 2nd order determinants, gives the pole
polynomial

π(s) = (s+ 1)2(s+ 2)3. (8)

The system poles is given by π(s) = 0, i.e., two poles s1,2 = −1 and three poles
s3,4,5 = −2.

The zero polynomial and the zeroes

The 2nd order determinant has the pole polynomial as denominator. Hence,
the zero polynomial is given by

ρ(s) = s3. (9)

The system has three poles in origo, i.e. the poles is s01,2,3 = 0.

Task 3

We define the system matrix

S =

[
A B
D E

]
=

 −1 1 2
1 −1 0
2 0 −1

 (10)
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as well as the generalized identity matrix

Ig =

 1 0 0
0 0 0
0 0 0

 . (11)

The system zeroes are given by the finite generalized egienvalues to the following
generalized eigenvalue/eigenvector problem

SM = IgMΛ. (12)

This problem has three generalized eigenvectors m1, m2 and m3. These are the

columns in the generalized eigenvector matrix M =
[
m1 m2 m3

]
. Λ is a

diagonal matrix with the generalized eigenvalues λ1, λ2 and λ3 on the diagonal.
note that the eigenvalues may be complex as well as real.
We define

m1 =

 m11

m21

m31

 . (13)

Ve have the following problem

Sm1 = Igm1λ1 (14)

for the definition of m1 and λ1. This gives −1 1 2
1 −1 0
2 0 −1


 m11

m21

m31

 =

 1 0 0
0 0 0
0 0 0


 m11

m21

m31

λ1 (15)

This gives

−m11 +m21 + 2m31 = m11λ1, (16)

m11 −m21 = 0, (17)

2m11 −m31 = 0. (18)

The two last equationes gives m31 = 2m11 and m21 = m11.
substituting this into the first equation gives

−m11 +m11 + 4m11 = m11λ1. (19)

this equation holds for all m11 different from zero.
Hence, λ1 = 4.
The system have then a zero s = 4.
The system has only one finite zero. Notice that the generalized eigenvalue
problem also have two generalized eigenvalues at infinity, i.e., λ2 = ∞ and
λ3 = ∞.

Task 4
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The system have a zero

s0 = −e+ 1

e
. (20)

The system has a zero for all e ̸= 0. This is shown from the transfer function

h(s) =
es+ e+ 1

s+ 1
. (21)

The system has a positive zero for all −1 < e < 0. The system is non-minimum
pase in this case The system have a zero in the right half plane in this case.

Task 5

a) The transfer matrix H(s) is an m × r matrix where m = 3 and r = 2 in
this case.

The system have r = 2 control inputs and m = 3 outputs. The rank of
the transfer matrix H(s) can maximum be min(m,r) = 2. This is defined
as the natural rank of H(s).

Notice that there may be values s = z such that rang(H(z)) < min(m, r).

such a value for s is defined for a transmission zero for the MIMO system.

b) The system have a zero s = 2. We have

H(2) =

 1
12 − 1

12
1
6 −1

6
0 0

 . (22)

c) We see that rank(H(2)) = 1 because column number one in H(2) is equal
to column number two.

d) A Singular Value Decomposition (SVD) of H(2) is given by

H(2) = USV T =

min(m,r)∑
i=1

uisiv
T
i = u1s1v

T
1 + u2s2v

T
2 , (23)

where

U =
[
u1 u2 u3

]
=

 0.4472 −0.8944 0
0.8944 0.4472 0

0 0 1

 , (24)

S =

 s1 0
0 s2
0 0

 =

 0.2635 0
0 0
0 0

 (25)

and

V =
[
v1 v2

]
=

[ √
2
2 −

√
2
2

−
√
2
2 −

√
2
2

]
. (26)
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We may find uz as the right singular vector to the zero singular value.
This will in this case be uz = v2 where v2 is column number two in V
where V =

[
v1 v2

]
. This gives

uz =

[
−

√
2
2

−
√
2
2

]
. (27)

Such a control input results in y = Guz = 0.

This is shown in the following

H(2) = u1s1v
T
1 + u2s2v

T
2 with uz = v2. This gives

H(2)v2 = u1s1v
T
1 v2 + u2s2v

T
2 v2, (28)

and use that V is an orthogonal matrix, i,e., such that V TV = I, vT1 v2 = 0
and vT2 v2 = 1. Ve have that

H(2)v2 = u2s2. (29)

Then s2 = 0. uz = v2 is therefore the control input resulting in a zero
output.

Notice: We have min(m, r) = 2 singular values, i.e.. s1 = 0.2635 and
s2 = 0. These values are identical to the diagonal elements in S. This
gives rang(H(z)) = 1 because there only is one singular value different
from zero.
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