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Abstract

Subspace identification methods (SIMs) for estimating state-space models have been proven to be very useful and numerically efficient.
They exist in several variants, but all have one feature in common: as a first step, a collection of high-order ARX models are estimated
from vectorized input–output data. In order not to obtain biased estimates, this step must include future outputs. However, all but one of the
submodels include non-causal input terms. The coefficients of them will be correctly estimated to zero as more data become available. They
still include extra model parameters which give unnecessarily high variance, and also cause bias for closed-loop data. In this paper, a new
model formulation is suggested that circumvents the problem. Within the framework, the system matrices(A,B,C,D) and Markov parameters
can be estimated separately. It is demonstrated through analysis that the new methods generally give smaller variance in the estimate of the
observability matrix and it is supported by simulation studies that this gives lower variance also of the system invariants such as the poles.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Subspace identification methods (SIMs) are attractive not
only because of their numerical simplicity and stability, but
also for their state-space form that is very convenient for op-
timal estimation, filtering, prediction, and control. Most SIMs
fall into the unifying theorem proposed byVan Overschee and
De Moor (1995), among which are canonical variate analysis
(CVA) (Larimore, 1990, 1992, 2004), N4SID (Van Overschee
& De Moor, 1994), subspace fitting (Jansson & Wahlberg,
1996) and MOESP (Verhaegen & Dewilde, 1992). Based on
the unifying theorem, all these algorithms can be interpreted
as a singular value decomposition of a weighted matrix. The
statistical properties such as consistency and efficiency of them
have been investigated recently (Bauer, 2003, 2005; Bauer
& Ljung, 2002; Chiuso & Picci, 2004; Gustafsson, 2002;
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Jansson & Wahlberg, 1998; Knudsen, 2001; Larimore, 1996).
All these variants are shown to be generically consistent. For
some special cases, it has also been shown that CVA gives
statistical efficiency and/or gives the lowest variance among
available weighting choices. Simulations also seem to indi-
cate that CVA may have better variance properties in overall
comparisons, see, e.g.Ljung (2003).

SIMs have many advantages as an alternative to the more
traditional prediction error method (PEM) or maximum likeli-
hood (ML) approach and they are very good for delivering ini-
tial estimates to PEM. A few drawbacks have been experienced
with SIMs

1. The estimation accuracy in general is not as good as the
PEM, in terms of the variance of the estimates.

2. The application of SIMs to closed-loop data typically gives
biased estimates, even though the data satisfy identifiability
conditions for traditional methods such as PEMs.

3. The estimation ofB and D may be more problematic
than that ofA and C, which is reflected in the poor es-
timation of zeros and steady-state gains (Wang & Qin,
2002).
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In this paper, we are concerned with the reasons why sub-
space identification approaches exhibit these drawbacks and
propose new SIMs which use fewer estimated parameters (i.e.,
more parsimonious) for open-loop applications. First of all, we
start with the analysis of existing subspace formulation using
the linear regression formulation (Jansson & Wahlberg, 1998;
Knudsen, 2001). This means that essentially several ARX mod-
els are estimated directly from data with different prediction in-
tervals. From this analysis we reveal that the typical SIM algo-
rithms use extra terms in the model that appear to be non-causal.
These terms, although conveniently included for performing
subspace projections, are the causes for inflated variance in the
estimates and partially responsible for the loss of closed-loop
identifiability. Peternell, Scherrer, and Deistler (1996)observe
this point as well and use constrained least squares (LS) to im-
prove the estimate.Shi and Macgregor (2001), Jansson (2003),
and Larimore (2004)enforce the triangular or causal model
structure through pre-estimating the Markov parameters using
a high-order ARX model. The proposed algorithms in this pa-
per which extendsQin and Ljung (2003b)do not require a
pre-estimation step.

The rest of the paper is organized as follows. In Section
2, we analyze the existing SIMs and point out the non-causal
projection. Based on this observation, novel SIM formulations
with only causal terms are presented in detail in Section 3. Nu-
merical implementation of proposed algorithms is introduced
in Section 4. In Section 5, numerical simulations are given to
show the efficiency of the proposed algorithm. Section 6 con-
cludes the paper.

2. Analysis of subspace formulation

2.1. Problem formulation and assumptions

We assume that the system to be identified can be written in
an innovation form as

xk+1 = Axk + Buk +Kek, (1a)

yk = Cxk +Duk + ek, (1b)

whereyk ∈ Rny , xk ∈ Rn, uk ∈ Rnu , andek ∈ Rny are the
system output, state, input, and innovation, respectively.A, B,
C andD are system matrices with appropriate dimensions.K
is the Kalman filter gain. To establish statistical consistency of
the SIM, we introduce following assumptions:

(A1) The eigenvalues ofA − KC are strictly inside the unit
circle.

(A2) The system is minimal in the sense that(A,C) is observ-
able and(A, [B,K]) is controllable.

(A3) The innovation sequenceek is a stationary, zero mean,
white-noise process with second order moments

E(eie
T
j )= R�ij ,

where�ij is the Kronecker delta.
(A4) The inputuk and innovation sequenceej are uncorrelated

for ∀k and∀j , i.e., the system operates in open loop.

(A5) The input signal is quasi-stationary (Ljung, 1999b) and is
persistently exciting of orderf +p, wheref andp stand
for future and past horizons, respectively, to be defined
later.

The identification problem is: given a set of input/output mea-
surements, estimate the system matrices(A,B,C,D), Kalman
filter gainK up to within a similarity transformation, and the
innovation covariance matrixR.

Based on the state-space description in (1), an extended state-
space model can be formulated as

Yf = �f Xk +HfUf +GfEf , (2a)

Yp = �pXk−p +HpUp +GpEp, (2b)

where the subscriptsf andp denote future and past horizons,
respectively. The extended observability matrix is

�f =




C

CA
...

CAf−1


 (3)

andHf andGf are Toeplitz matrices

Hf =




D 0 · · · 0
CB D · · · 0
...

...
. . .

...

CAf−2B CAf−3B · · · D


 , (4a)

Gf =




I 0 · · · 0
CK I · · · 0
...

...
. . .

...

CAf−2K CAf−3K · · · I


 . (4b)

The input and output data are arranged in the following Hankel
form:

Uf =




uk uk+1 · · · uk+N−1
uk+1 uk+2 · · · uk+N
...

...
. . .

...

uk+f−1 uk+f · · · uk+f+N−2


 (5a)

� [uf (k) uf (k + 1) · · · uf (k +N − 1)], (5b)

Up =



uk−p uk−p+1 · · · uk−p+N−1
uk−p+1 uk−p+2 · · · uk−p+N
...

...
. . .

...

uk−1 uk · · · uk+N−2


 (5c)

� [up(k − p) up(k − p + 1) · · · up(k − p +N − 1)].
(5d)

Similar formulations are made forYf , Yp, Ef , andEp. The
state sequences are defined as

Xk = [xk, xk+1, . . . , xk+N−1], (6a)

Xk−p = [xk−p, xk−p+1, . . . , xk−p+N−1]. (6b)

Subspace identification consists of estimating the extended ob-
servability matrix first and then the model parameters.
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2.2. Analysis of conventional SIMs

As the first step, SIMs minimize the following objective func-
tion (Van Overschee & De Moor, 1996):

[L̂1 L̂2 L̂3] = arg min{‖Yf − L1Yp − L2Up − L3Uf ‖2
F }

= arg min



N−1∑
j=0

∥∥∥∥∥∥∥yf (k + j)

−[L1 L2 L3]

yp(k − p + j)
up(k − p + j)
uf (k + j)



∥∥∥∥∥∥

2

 , (7)

where uf , up, yf , and yp are defined in (5b) and (5d) as
columns of the corresponding data matrices.

Denoting

L1 =




L1
11 L1

12 · · · L1
1p

L1
21 L1

22 · · · L1
2p

...
. . .

L1
f 1 L1

f 1 L1
fp




�




L1
1

L1
2

...

L1
f


 , (8a)

L2 =




L2
11 L2

12 · · · L2
1p

L2
21 L2

22 · · · L2
2p

...
. . .

L2
f 1 L2

f 1 L2
fp




�




L2
1

L2
2

...

L2
f


 , (8b)

L3 =




L3
11 L3

12 · · · L3
1f

L3
21 L3

22 · · · L3
2f

...
. . .

L3
f 1 L3

f 1 L3
ff




�




L3
1

L3
2

...

L3
f


 , (8c)

the above problem is equivalent tof separate sub-problems:

[L̂1
i L̂

2
i L̂

3
i ]

= arg min



N−1∑
j=0

∥∥∥∥∥∥∥yk+j+i−1

−[L1
i L

2
i L

3
i ]


yp(k − p + j)
up(k − p + j)
uf (k + j)



∥∥∥∥∥∥∥

2

 (9)

for i = 1, . . . , f , this is to say thatf different ARX mod-
els are estimated from data. Consider theith subproblem and
spell out the nature of the termL3

i uf (k+ j). This subproblem

corresponds to the model

yk+i−1 = [L1
i L

2
i ]
[
yp(k − p)
up(k − p)

]
+ L3

i uf (k)+ vk

= [L1
i L

2
i ]
[
yp(k − p)
up(k − p)

]
+ L3

i1uk + L3
i2uk+1

+ · · · + L3
iiuk+i−1

+
f∑

j=i+1

L3
ij uk+j−1 + vk. (10)

Note that the summation in (10) represents a non-causal rela-
tion from u to y. That is,L3

ij are estimated even though it is

known thatL3
ij = 0 for j > i. The matrixL3 is, in other words,

block lower triangular. However, this information is not nor-
mally taken care of in (7), as pointed out inShi and Macgregor
(2001). While there is no problem from a consistency point of
view given proper excitation of the input, known parameters
are estimated from data.

Shi (2001)proposes an algorithm known asCVAHf that
removes the impact of future input from the future output us-
ing pre-estimated Markov parameters and then performs sub-
space projections.Shi (2001)further shows that this procedure
achieves consistency.Larimore (2004)argues that theCVAHf
was implemented in Adaptx and that it is efficient, but he does
not discuss the impact of imperfect pre-estimates. Therefore,
we can make the following statements about the typical SIM
formulation in general.

1. The model format used in SIM during the projection step is
non-causal. This would result in non-causal models in the
projection step. Although the non-causal terms are ignored
at the step to estimateB, D, all the model parameters es-
timate have inflated variance due to the fact that extra and
unnecessary terms are included in the model.

2. Because of the extra terms that turn out to be ‘future’ inputs
relative to the output, SIMs in general have problems with
closed-loop data using direct identification methods. Most
SIMs usually project outUf as follows:

Yf�⊥
Uf

= �f Xk�
⊥
Uf

+GfEf�⊥
Uf

, (11)

where�⊥
Uf

= I − UT
f (Uf U

T
f )

−1Uf . Because of the non-

causal terms in the model,(1/N)EfUT
f �= 0 asN → ∞

for closed-loop data. As a consequence, many SIMs fail to
work on closed-loop data, except for a few SIM algorithms
that avoid this projection (Chou & Verhaegen, 1997; Wang
& Qin, 2002).

3. BecauseUf contains extra rows due to the extra terms, the
projection in (11) tends to reduce the information content
unnecessarily even for open-loop data, leading to inefficient
use of the data.

4. These non-causal terms will have negligible coefficients only
when the number of data is very large and process is well
excited. For a limited number of samples or non-white input
signals, SIM algorithms tend to have large estimation errors.
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To avoid these problems the SIM model must not include
these non-causal terms,Peternell et al. (1996)propose a few
methods to exclude these extra terms. Specially, they recom-
mend a two steps procedure: (i) use a conventional (uncon-
strained) SIM to estimate the deterministic Markov parameters
CAi−1B; and (ii) formHf with these Markov parameters to
ensure that it is lower triangular and then estimate the extended
observability matrix. We propose a parallel and a sequential im-
plementation of a causal subspace identification method (PAR-
SIM) which remove these non-causal terms by enforcing a
lower triangular structure inL3 and hence ofHf at every step
of the SIM procedure. By enforcing a lower-triangular struc-
ture, we reduce the number of estimated parameters in this stage
by f (f − 1)/2. The parallel PARSIM (PARSIM-P) method
involves a bank of LS problems in parallel, while the sequen-
tial PARSIM (PARSIM-S) involves a bank of LS problems se-
quentially. Optimal weighting is derived for the PARSIM al-
gorithms. An optimal estimate of theB,D matrices is given
using the Kalman filter structure.

3. Subspace identification avoiding non-causal terms

The key idea in the proposed method is to exclude the non-
causal terms ofUf mentioned in Section 2. To accomplish
this, we partition the extended state space model row-wise as
follows:

Yf =



Yf 1
Yf 2
...

Yff


 , Yi �



Yf 1
Yf 2
...

Yf i


 , i = 1,2, . . . , f , (12)

whereYf i = [yk+i−1 yk+i · · · yk+N+i−2]. PartitionUf and
Ef in a similar way to defineUf i ,Ui ,Ef i , andEi , respectively,
for i = 1,2, . . . , f . Denote further

�f =




�f 1
�f 2
...

�ff


 , (13a)

Hf i � [CAi−2B · · · CB D] (13b)

� [Hi−1 · · · H1 H0], (13c)

Gf i � [CAi−2K · · · CK I ] (13d)

� [Gi−1 · · · G1 G0], (13e)

where�f i=CAi−1, andHi andGi are the Markov parameters
for the deterministic input and innovation sequence, respec-
tively. We have the following equations by partitioning (2a),

Yf i = �f iXk +Hf iUi +Gf iEi (14)

for i = 1,2, . . . , f . Note that each of the above equations is
guaranteed causal.

3.1. PARSIM algorithms

By eliminatingek in the innovation model through iteration,
it is straightforward to derive the following relation (Knudsen,
2001):

Xk = LzZp + ApKXk−p, (15)

where

Lz� [�p(AK,K) �p(AK,BK)], (16a)

�p(A,B)� [Ap−1B · · · AB B], (16b)

AK �A−KC, (16c)

BK �B −KD, (16d)

Zp � [Y T
p UT

p ]T. (16e)

Substituting this equation into (14), we obtain

Yf i = �f iLzZp + �f iA
p
KXk−p +Hf iUi +Gf iEi (17)

for i = 1,2, . . . , f . Note the second term on the RHS of (17)
tends to zero asp tends to infinity under Assumption A1. Now
we have the following parallel PARSIM algorithm to estimate
�f i andHf i .

Algorithm 1. Parallel PARSIM (PARSIM-P)

1. Perform the following LS estimates, fori = 1,2, . . . , f ,

[�̂f iLz Ĥf i] = Yf i
[
Zp
Ui

]†

(18)

where[·]† stands for the Moore–Penrose pseudo-inversion.
Stack�̂f iLz together to obtain̂�f Lz as


�̂f 1Lz

�̂f 2Lz
...

�̂ff Lz


= �̂f Lz. (19)

2. Perform SVD for the following weighted matrix:

W1(�̂f Lz)W2 = UnSnV T
n + ε, (20)

whereW1 is non-singular andLzW2 does not lose rank.Un,
Sn andVn are associated to the firstn largest singular values.
The residual termε stands for the product of the remaining
singular vectors and singular values. We choose

�̂f =W−1
1 UnS

1/2
n (21)

from which the estimate ofA and C can be obtained
(Verhaegen, 1994).

3. The estimate ofB andD is discussed in the next section
using a Kalman filter formulation.

Note that the proposed parallel PARSIM givesconsis-
tent estimates for�f andHi−1, ∀i = 1,2, . . . , f under the
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assumptions stated in Section 2. To rationalize the statement,
it is sufficient to show that asN → ∞,

[�̂f iLz Ĥf i] → [�f iLz Hf i], (22)

where[�̂f iLz Ĥf i] is calculated according to (18). Assump-
tion A1 implies that the initial state has negligible effect on
the estimate with sufficient largep, as shown in (17). From A4
we have(1/N)EiZT

p → 0 and(1/N)EiUT
i → 0 asN → ∞.

Substituting (17) withp → ∞ into (18) leads to

[�̂f iLz Ĥf i] = [�f iLz Hf i]
[
Zp
Ui

] [
Zp
Ui

]†

+Gf iEi
[
Zp
Ui

]†

= [�f iLz Hf i] +Gf i
(

1

N
Ei

[
Zp
Ui

]T
)

×
(

1

N

[
Zp
Ui

] [
Zp
Ui

]T
)−1

→ [�f iLz Hf i]
asN → ∞. Assumption A5 guarantees that all system modes
are sufficiently excited so that the matrix inverse in the above
equation exists. It has been shown inKnudsen (2001)that A2
is needed forLz to have full row rank and�f to have full
column rank. Therefore, the SVD step in the PARSIM-P algo-
rithm guarantee that̂�f and�f have the same column space
asymptotically.

The PARSIM-P algorithm estimates the model parameters in
parallel which re-estimate some of the Markov parameters in
Hf i repeatedly. To avoid this we rewrite (17) by ignoring the
A
p
K term

Yf i = �f iLzZp +Hi−1Uf 1 +Hf(i−1)[UT
f 2 · · · UT

f i]T
+Gf iEi ,

whereHi−1 is defined in (13c). If we perform the above pro-
jections sequentially fori = 1,2, . . . , f , Hf(i−1) is estimated
in the (i − 1)th step.�f i andHi−1 are the only unknown at
the ith step.

Algorithm 2. Sequential PARSIM (PARSIM-S)

1. Perform the following LS fori = 1,

[�̂f 1Lz Ĥf 1] = Yf 1

[
Zp
Uf 1

]†

. (23)

2. Perform the following causal projection fori = 2, . . . , f

[�̂f i Ĥi−1] = (Yf i − Ĥf (i−1))[UT
f 2 · · · UT

f i]T

×
[
Zp
Uf 1

]†

. (24)

Stack�̂f iLz together as Eq. (19).
3. Same as Step 2 in Algorithm 1.

The sequential PARSIM givesconsistentestimates for�f
andHi−1, ∀i = 1,2, . . . , f under the assumptions stated in

Section 2. The proof is similar to that of PARSIM-P, therefore,
we omit it in the paper.

Remark 1. For finite past horizonp the algorithm is biased,
but the bias decays to zero exponentially withp. If p is too
large in practice, however, large variance is expected for the
estimates. Therefore, it is necessary in practice to use a finite
p for the best trade-off. Cross-validation can be used to select
an optimalp.

Remark 2. The parallel PARSIM requires that no correlation
exists between futureuk and pastek to be consistent, which is
only valid under open loop condition, therefore, the PARSIM-
P algorithms are biased for direct closed-loop identification. To
make it applicable to closed-loop data, an innovation estimation
approach is proposed inQin and Ljung (2003a).

Remark 3. The Markov parameters,Hi−1, ∀i = 1,2, . . . , f ,
can be estimated directly from the SIMs without the knowledge
of system matrices,(A,B,C,D). Meanwhile, the low triangu-
lar structure of the Toeplitz matrix,Hf , is conserved.

3.2. Improved variance of PARSIM algorithms

After presenting the PARSIM algorithms, we analyze the
variance of the PARSIM estimates relative to that of conven-
tional SIM algorithms. For conventional SIMs the asymptotic
variance of the model estimates is derived inBauer and Jans-
son (2000), Bauer and Ljung (2002), Chiuso and Picci (2004).
These analyses provide insight into what contribute to the vari-
ance of the estimates.

In this subsection we provide a covariance equality for PAR-
SIM estimates by interpreting the sub-space projections in the
generalized least squares (GLS) framework (Mardia, Kent, &
Bibby, 1979). For theith block row we explained that conven-
tional SIMs use model (10) but the process is actually (17). By
comparing (10) with (17) whenp is large we have,

[L1
i L

2
i ] = �f iLz,

L3
i = [Hf i

... 0 · · · 0],

vk =
i∑
j=1

Gi−j ek+j−1.

Note thatvk is auto-correlated, therefore, the SIM projections
do not fit into the ML framework. Denoting

cov[vk] = �v,

Vf i =Gf iEi
and

Vi,N = vec(V T
f i),

wherevec() of a matrix forms a long column vector by stacking
the columns of that matrix, we have

cov(Vi,N )= �v ⊗ IN .



2048 S.J. Qin et al. / Automatica 41 (2005) 2043–2053

With this notation we can convert the PARSIM equation (17)
into

Yi,N = X1,N�1 + Vi,N , (25)

where

Yi,N = vec(Y T
f i),

X1,N = I ⊗ [ZT
p U

T
i ],

�1 = vec([�f iLz Hf i]T).
Similarly, the conventional SIM equation for theith block row
(10) can be converted to

Yi,N = X1,N�1 + X2,N�2 + Vi,N , (26)

where

X2,N = I ⊗ [UT
f (i+1) U

T
f (i+2) · · · UT

ff ]
is the matrix of non-causal input data and

�2 = vec([L3
i(i+1) L

3
i(i+2) · · · L3

if ]T)
is the vector of extra parameters in conventional SIMs. Now
we state that the LS solutions (17) for PARSIMs and (10) for
conventional SIMs are identical to the GLS solution to (25) and
(26), respectively (Mardia et al., 1979). The estimates from both
conventional SIMs and PARSIMs are consistent, which is not
of concern here. The question is whether PARSIM estimates
have smaller variance than conventional SIMs regardless of the
data lengthN.

From Mardia et al. (1979)we know that the GLS interpre-
tation of PARSIM estimates leads to

cov(�̂1,N )= (XT
1,N (�v ⊗ IN)−1X1,N )

−1,

where�̂1,N is the PARSIM estimate for�1 and

cov

([
�̂
′
1,N

�̂
′
2,N

])
= ([X1,N X2,N ]T(�v ⊗ IN)−1[X1,N X2,N ])−1,

where�̂
′
1,N is the conventional SIM estimate for�1.

To simplify the notation, we denote

Sij,N = Xi,N (�v ⊗ IN)−1Xj,N (27)

for i, j = 1,2. Then the covariance expressions become

cov(�̂1,N )= S−1
11,N ,

cov

([
�̂
′
1,N

�̂
′
2,N

])
=
[
S11,N S12,N
ST

12,N S22,N

]−1

=
[

�11,N �12,N
�T

12,N �22,N

]

from which it is easy to show that

cov(�̂
′
1,N )= �11,N = S−1

11,N + S−1
11,NS12,N�22,NS

T
12,NS

−1
11,N .

Therefore,

cov(�̂
′
1,N )− cov(�̂1,N )= S−1

11,NS12,N�22,NS
T
12,NS

−1
11,N . (28)

Noticing that�22,N is strictly positive definite due to the inverse
of the covariance matrix, we have

cov(�̂
′
1,N )�cov(�̂1,N ) (29)

regardless ofN and the equality holds only ifS12,N = 0. It is
noted further thatS−1

11,NS12,N in (28) is the regression coefficient
matrix ofX2,N onX1,N , which is not zero for colored inputs.
We can only compare the variance of�̂1 rigorously as shown
above. For�̂f estimate from̂�1 we can only say that PARSIM
estimate likely leads to a better estimate of the true observability
subspace, but we cannot compare the variance since it depends
on the basis. Similarly we cannot compare the variance of the
system matrices such asC andA.

With this we conclude that the PARSIM estimates of the
Markov parameters generally have a smaller variance than those
of the conventional SIM estimates for anyN. The estimates of
theA andCmatrices are unique functions (in the chosen basis)
of �̂1,N . It thus follows from (29) and the Gauss approximations
formula that the asymptotic covariances ofA andC are also as
good or better with the PARSIM approach. The Monte-Carlo
study in Section 5.2 provides strong indications that this indeed
is the case.

3.3. Determination of observability matrix with optimal
weighting

In the conventional SIM formulation under open-loop con-
ditions,

Ef�⊥
Uf

→ Ef asN → ∞ (30)

sinceEf is uncorrelated withUf . Therefore, for largeN (11)
becomes

Yf�⊥
Uf

≈ �f Xk�
⊥
Uf

+GfEf . (31)

Post-multiplyingZT
p to (31) eliminate the noise term for large

N,

Yf�⊥
Uf
ZT
p ≈ �f Xk�

⊥
Uf
ZT
p . (32)

Van Overschee and De Moor (1995)show that all SIM methods
perform SVD on the following weighted matrix:

WrYf�⊥
Uf
ZT
pWc =Wr�f Xk�

⊥
Uf
ZT
pWc, (33)

whereWr andWc are the row and column weighting matrices,
respectively. In CVAWr = (Yf�⊥

Uf
Y T
f )

−1/2 which basically
normalizes the output variables.Gustafsson (2002)shows that
an approximately optimal weighting forWc is

Wc = (ZpZT
p − ZpUT

f (Uf U
T
f )Uf Z

T
p)

−1/2

= (Zp�⊥
Uf
ZT
p)

−1/2, (34)

which is used in CVA and MOESP. Substituting (34) into
(33), and replacingXk with LzZp as instrumental variables,
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we obtain,

WrYf�⊥
Uf
ZT
pWc =Wr�f LzZp�

⊥
Uf
ZT
p(Zp�

T
Uf
ZT
p)

−1/2

=Wr�f Lz(Zp�
⊥
Uf
ZT
p)

1/2. (35)

Comparing (35) with (20), the equivalent weighings for the
PARSIMs algorithm are

W1 =Wr, (36)

W2 = (Zp�⊥
Uf
ZT
p)

1/2. (37)

Gustafsson and Rao (2002)show that the row-weightingW1
has no influence on the asymptotic accuracy of the estimated
observability matrix. Our simulation experience shows thatW1
has negligible influence on the accuracy of the estimated system
matrices as well. Therefore, we suggest to useW1 = I in the
PARSIM algorithms.

4. Numerical implementation of PARSIMs

Since the projections in the PARSIM algorithms bear sim-
ilarity to the standard SIMs such as MOESP, it is straightfor-
ward to implement these parallel or sequential projections us-
ing QR decomposition (Qin & Ljung, 2003b). In this section, a
new approach to calculate theB, D matrices is derived by pre-
whitening the equation error of the general state-space model.

4.1. QR implementation for K

Once�̂f is known, the Kalman filter gainK can be estimated
(Di Ruscio, 1996). With a largep, substituting (15) into (2)
leads to

Yf = �f LzZp +HfUf +GfEf . (38)

Therefore,

Yf�⊥
Zp
Uf

=GfEf�⊥
Zp
Uf

=GfEf (39)

sinceEf is not correlated withZp andUf in open loop. Per-
forming QR decomposition,[
Zp
Uf
Yf

]
=
[
R11
R21 R22
R31 R32 R33

][
Q1
Q2
Q3

]
(40)

then

R33Q3 =GfEf . (41)

Denotingek =Fe∗k such thatcov(e∗k )= I , from Assumption
A3 we haveFF T = R. Using this notation we have

GfEf =G∗
f E

∗
f , (42)

where

G∗
f =




F 0 · · · 0
CKF F · · · 0
...

...
. . .

...

CAf−2KF CAf−3KF · · · F




∈ Rnyf×nyf . (43)

From Eqs. (41) and (42) and using the fact thatQ3 is an or-
thonormal matrix, we choose

Ê∗
f =Q3, (44a)

Ĝ∗
f = R33. (44b)

Therefore,

F̂ = R33(1 : ny,1 : ny) (45)

andK can be calculated fromG∗
f using�f .

4.2. Determination ofB,D

With A andC estimates, Section 10.6 inLjung (1999b)gives
an effective approach to estimateB andD with an output er-
ror formulation. Note that there is a choice whether or not to
pre-whiten the residuals, as discussed, e.g., inLjung (1999a).
This choice also corresponds to whether‘focus’ is set to
‘simulation’ or ‘prediction’ (default) in the N4SID
function of the System Identification Toolbox. Here, we give a
modified approach to estimatingB, D and the initial state op-
timally usingA, C, K andF for the general innovation form.
Since the initial state is estimated this step does not introduce
a bias for finitep.

From the innovation form of the system we have

xk+1 = AKxk + BKuk +Kyk, (46)

whereAk andBk are defined in (16). The process output can
be represented as

yk = C(qI − AK)−1x0 + [C(qI − AK)−1BK +D]uk
+ C(qI − AK)−1Kyk + ek (47)

or

[I − C(qI − AK)−1K]yk
= C(qI − AK)−1x0 + [C(qI − AK)−1BK +D]uk + ek

(48)

usingek=Fe∗k wheree∗k has an identity covariance matrix, and
defining

ỹk = F−1[I − C(qI − AK)−1K]yk, (49a)

G(q)= F−1C(qI − AK)−1, (49b)

D∗ = F−1D (49c)

we obtain,

ỹk =G(q)BKuk +D∗uk +G(q)x0�k + e∗k
=G(q)⊗ uT

k vec(BK)+ Iny ⊗ uT
k vec(D

∗)
+G(q)x0�k + e∗k , (50)

wherevec(BK) andvec(D∗) are vectorizedBK andD∗ ma-
trices along the rows.�k is the Kronecker delta function. Now
vec(BK), vec(D∗) andx0 can be estimated using LS from the
above equation. TheB, D matrices can be backed out as

D̂ = FD̂∗, (51a)

B̂ = B̂K +KD̂. (51b)
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5. Simulation and industrial case studies

In this section, the results of two simulation cases and an
industrial case are reported to demonstrate the efficiency of
proposed PARSIMs with comparison to N4SID in the System
Identification Toolbox (Version 6.0) of Matlab. The first simu-
lation is a second order single input and single output (SISO)
counter example fromJansson and Wahlberg (1998). The sec-
ond is a Monte-Carlo simulation study over randomly chosen
fourth order systems with two inputs and two outputs. The in-
dustrial case study is a 3× 3 four-stage evaporator fromVan
Overschee and De Moor (1996).

5.1. Simulation example 1

The counter-example proposed inJansson and Wahlberg
(1998) is used here to test the effectiveness of the proposed
parallel PARSIM methods

xk+1 =
[

2� −�2

1 0

]
xk +

[
1

−2

]
uk +

[
k1
k2

]
ek, (52a)

yk = [2 − 1]xk + ek, (52b)

where the variance of the noise processvar(ek) = 217.1, � =
0.9184,k1=−0.21 andk2=−0.559 are used here. The system
input is a high-pass filter with unit white Gaussian noise as
input.

uk = (1 − �q−1)2(1 + �q−1)2	k.

For comparison we use the N4SID routine in Matlab, which
actually implemented the CVA weighting, as the standard SIM
algorithm. PEM implemented as the ARMAX routine in Mat-
lab’s System Identification Toolbox is used as a benchmark.
The performance of the methods is investigated with two in-
dices, the standard deviation of the pole estimation errors and
that of the zero estimation errors,

P(N)= 1

M

M∑
k=1

‖P̂ kN − P0‖2, (53a)

Z(N)= 1

M

M∑
k=1

‖ẐkN − Z0‖2, (53b)

whereM = 200 is the number of independent simulations.P̂ kN
and ẐkN are the estimated poles and zeros withN samples at
kth simulation, respectively.P0 andZ0 are the true poles and
zeros of the system, respectively. We choosep = 7, f = 5 for
PARSIMs. The results of the simulations are shown inFigs. 1
and2, which show the asymptotical performance of different
algorithms. The results show that the PARSIMs outperform
N4SID for both pole and zero estimation, and the zero estimates
of PARSIMs are very close to those of PEM.

5.2. Simulation example 2

To study the potential benefits of the causal parameterization
in PARSIMs, we perform a Monte-Carlo study over randomly

100

10-1

10-2

102 103 104

Sample Size

P
 (

N
)

PEM

N4SID/CVA

PARSIM−P

PARSIM−S

Fig. 1. Asymptotic pole estimation results of the SISO counter example.

100

10-1

10-2

10-3

102 103 104

Sample Size

Z
 (

N
)

PEM
N4SID/CVA
PARSIM−P
PARSIM−S

Fig. 2. Asymptotic zero estimation results of the SISO counter example.

chosen fourth order systems with two inputs and two outputs,
estimated with the different methods. Since the motivation for
the causal parameterization is to provide a better estimate of the
observability matrix, we concentrate on the estimates of theA-
matrix, viz. its eigenvalues. The input was chosen as a random
binary signal with power up to 0.1 of the Nyquist frequency, and
normal white noise with 0.1 times the unit covariance matrix
was added to the output.

The system and the input/output data were generated by Mat-
lab as follows:

m0 = idss(drss(4,2,2));
m0.d = zeros(2,2);
m0.b = 5*randn(4,2);
u = idinput([400,2],’rbs’,[0 0.1]);
y = sim(m0,u) + 0.1*randn(400,2);

For each data set a model was estimated using Matlab’s
standard N4SID/CVA routine as well as using PARSIM-S and
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Fig. 3. The valuer defined by (54) for the 100 randomly chosen systems
as defined in the text. The number of realizations for each system,M, was
25. (The value for system 31 is 4.46 and out of range.) PARSIM-P is better
than N4SID/CVA in 84 of the 100 cases. The average excess of standard
deviation for N4SID/CVA is 9.1%.

PARSIM-P. The future horizon (f) was chosen as 20 and the
past horizon (p) was chosen as 10 in all cases.

For each method the standard deviations (absolute values)
of each of the four eigenvalues were estimated over theM
realizations in the usual way


̂CVA
i , 
̂PARSIM-P

i , i = 1,2,3,4.

As PARSIM-S and PARSIM-P gave nearly the same results, we
only compare the performance of N4SID/CVA and PARSIM-
P in the paper. The mean of the ratios of the accuracy of the
methods was computed

r = 1

4

4∑
i=1


̂CVA
i


̂PARSIM-P
i

(54)

as a measure of the relative accuracy of the two methods in
estimating the poles/eigenvalues. A plot ofr over the 100 dif-
ferent systems withM=25 is given inFig. 3. It is seen that the
enforcement of the causal model when estimating the observ-
ability matrix gives a noticeable improvement in the standard
deviation of the eigenvalue estimates.

5.3. Industrial case study

In this subsection, the experimental data from a four-stage
evaporator are analyzed (Van Overschee & De Moor, 1996). The
three inputs are feed flow, vapor flow to the first evaporator stage
and cooling water flow. The three outputs are the dry matter
content, the flow and temperature of the outcoming product. The
time series plot of the data indicates that the inputs are PRBS.
There are 6305 experimental data points, we use the first 3152
points for estimation and the rest of them for validation. We
choosep= 30,f = 20 for PARSIMs and N4SID. By using the

Table 1
The model fit as measured byR2 in (55) of identified models for simu-
lation and prediction of validation data for the evaporator. (R2 less than
zero is indicated by ‘–’.)

1 step 20 steps 100 steps Simulation
ahead ahead ahead

y1 74.79 60.16 49.64 44.35 N4SID
74.65 61.20 54.14 51.24 PARSIM-P
74.52 60.75 53.87 48.16 PARSIM-S

y2 62.12 60.27 60.12 58.15 N4SID
61.62 60.07 60.28 59.97 PARSIM-P
61.43 60.43 60.01 59.55 PARSIM-S

y3 84.50 57.27 14.27 — N4SID
84.47 60.60 42.06 30.35 PARSIM-P
84.47 60.64 34.49 15.35 PARSIM-S

Akaike information criterion (AIC) and examining the singular
values an 11th order system is chosen.

The coefficient of determination

R2 =
(

1 − �i[yk(i)− ŷk(i)]2
�i[yk(i)− ȳk]2

)
× 100 (55)

of validation data is used as the metric for comparing different
SIMs, whereyk, ŷk andȳk are the measured output, simulated
or predicted model output and the mean of the output for the
kth output variables, respectively. The result of simulation and
various horizons of prediction for different SIMs is shown in
Table 1.

From the result, we can see that all methods work well for
one-step ahead predictions. As the prediction horizon increases,
the prediction accuracy decreases, as expected. In general, the
PARSIM algorithms outperform the N4SID on long-term pre-
dictions. For simulation error N4SID failed ony3. While the
N4SID results are almost the same as the PARSIM results for
1 and 20 steps ahead predictions, the PARSIMs produce better
results for 100 steps ahead prediction and simulation.

6. Conclusions

In this paper, a novel sub-space identification approach is
proposed to enforce the casuality of high-order ARX models.
The key idea is to avoid the estimation of parameters that are
known to be zero. This means that a lower triangular struc-
ture of an estimated matrix must be enforced which leads to
somewhat more complicated calculations. Also other authors
have noted the potential problems that arise from these non-
causal elements.Ljung and McKelvey (1996)have noted that
the problems with closed-loop data have their roots in these
non-causal terms. They suggest to use explicitly computedk-
step ahead predictions from a single causal ARX-model. This
is very different from the algorithm suggested in this paper,
and apparently it does not make the best use of the observed
data. The new algorithms, which fall into the subspace fitting
framework, are shown to be consistent under mild assumptions
and applicable to a general state-space model structure.
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We have shown that the variance of the observability matrix
estimates is in general smaller if the non-causal terms are omit-
ted. It is difficult to make further comparison about the vari-
ance of the system matrices because they depend on the basis.
Simulation tests are conducted to compare the variance of the
eigenvalues of theA matrix. We have indeed seen improved
behavior in the reported tests. The simulation studies indicate
that the proposed algorithms are superior to SIMs with CVA
weighting, which are considered optimal.
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