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Abstract

Subspace identification methods (SIMs) for estimating state-space models have been proven to be very useful and numerically effici
They exist in several variants, but all have one feature in common: as a first step, a collection of high-order ARX models are estimat
from vectorized input—output data. In order not to obtain biased estimates, this step must include future outputs. However, all but one of
submodels include non-causal input terms. The coefficients of them will be correctly estimated to zero as more data become available. T
still include extra model parameters which give unnecessarily high variance, and also cause bias for closed-loop data. In this paper, a
model formulation is suggested that circumvents the problem. Within the framework, the system niatriBe€’, D) and Markov parameters
can be estimated separately. It is demonstrated through analysis that the new methods generally give smaller variance in the estimate o©
observability matrix and it is supported by simulation studies that this gives lower variance also of the system invariants such as the poles
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction Jansson & Wahlberg, 1998; Knudsen, 2001; Larimore, 1996
All these variants are shown to be generically consistent. For

Subspace identification methods (SIMs) are attractive no$ome special cases, it has also been shown that CVA gives

only because of their numerical simplicity and stability, butstatistical efficiency and/or gives the lowest variance among

also for their state-space form that is very convenient for opavailable weighting choices. Simulations also seem to indi-

timal estimation, filtering, prediction, and control. Most SIMs cate that CVA may have better variance properties in overall

fall into the unifying theorem proposed Man Overschee and Comparisons, see, e.gjung (2003)

De Moor (1995) among which are canonical variate analysis SIMs have many advantages as an alternative to the more

(CVA) (Larimore, 1990, 1992, 2004N4SID (Van Overschee traditional prediction error method (PEM) or maximum likeli-

& De Moor, 1999, subspace fitting Jansson & Wahlberg, hood (ML) approach and they are very good for delivering ini-

1996 and MOESP \erhaegen & Dewilde, 1992Based on tial estimates to PEM. A few drawbacks have been experienced

the unifying theorem, all these algorithms can be interpretedvith SIMs

as a singular value decomposition of a weighted matrix. The

statistical properties such as consistency and efficiency of thedy The estimation accuracy in general is not as good as the

have been investigated recentlgajer, 2003, 2005; Bauer  PEM, in terms of the variance of the estimates.

& Ljung, 2002; Chiuso & Picci, 2004; Gustafsson, 2002;2. The application of SIMs to closed-loop data typically gives

o biased estimates, even though the data satisfy identifiability
* A brief version of this paper was presented at the 13th IFAC Symposium  conditions for traditional methods such as PEMSs.

on System Identification, August 27, 2003, Rotterdam, the Netherlands. Thig, The estimation ofB and D may be more problematic

paper vyas recommended for publlcatloq in revised for_m by essomate Editor than that ofA and C, which is reflected in the poor es-
Brett Ninness under the direction of Editor Torsten Soéderstrom.

* Corresponding author. Tel.: +15124714417; fax: +15124717060. timation of zeros and steady-state gaiWagg & Qin,
E-mail addressqgin@che.utexas.ed(8.J. Qin). 2002.

0005-1098/$ - see front matté& 2005 Elsevier Ltd. All rights reserved.
doi:10.1016/j.automatica.2005.06.010
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In this paper, we are concerned with the reasons why sul(A5) The input signal is quasi-stationatyjing, 1999 and is
space identification approaches exhibit these drawbacks and  persistently exciting of ordef + p, wheref andp stand
propose new SIMs which use fewer estimated parameters (i.e.,  for future and past horizons, respectively, to be defined
more parsimonious) for open-loop applications. First of all, we later.
start with the analysis of existing subspace formulation using
the linear regression formulatiodgnsson & Wahlberg, 1998;  The identification problem is: given a set of input/output mea-
Knudsen, 200)L This means that essentially several ARX mod-sSurements, estimate the system matricesB, C, D), Kalman
els are estimated directly from data with different prediction in-filter gain K up to within a similarity transformation, and the
tervals. From this analysis we reveal that the typical SIM algoinnovation covariance matri.
rithms use extra terms in the model that appear to be non-causal.Based on the state-space description in (1), an extended state-
These terms, although conveniently included for performingsPace model can be formulated as
subspace projections, are the causes for inflated variance in t
estimpates gnél partially responsible for the loss of closed-loo%? =TyXu+ HiUs +GrEy, (22)
identifiability. Peternell, Scherrer, and Deistler (199®)serve Yy =T,Xk—p+ HyUp + GpEp, (2b)
this point as well and use constrained least squares (LS) to im-
prove the estimateShi and Macgregor (200L)ansson (2003) where the subscriptsand p denote future and past horizons,
and Larimore (2004)enforce the triangular or causal model espectively. The extended observability matrix is

structure through pre-estimating the Markov parameters using - C
a high-order ARX model. The proposed algorithms in this pa- CA
per which extend®in and Ljung (2003bdo not require a 'y = : (3)
pre-estimation step. 1
The rest of the paper is organized as follows. In Section LCA

2, we analyze the existing SIMs and point out the non-causaind H; and G  are Toeplitz matrices
projection. Based on this observation, novel SIM formulations _
with only causal terms are presented in detail in Section 3. Nu- D 0 e 0

. f . . . CB D ... 0
merical implementation of proposed algorithms is introducedy . _ . ] _ o, (4a)
in Section 4. In Section 5, numerical simulations are given to ° : : o
show the efficiency of the proposed algorithm. Section 6 con- | CA/2B CA/=2B ... D
cludes the paper. - 0 . 0
2. Analysis of subspace formulation Gy= C.K 1 0 . (4b)
2.1. Problem formulation and assumptions L CAT2K CAT3K o 1]

o _ The input and output data are arranged in the following Hankel
We assume that the system to be identified can be written igyrm:

an innovation form as

U U+l - Uk+N-1
Xp+1 = Axg + Buy + Key, (1a) Uk+1 U2 - Uk+N
Ur= . . . (5a)
vk = Cxg + Duy + ey, (1b) : . .
. " " . LUkt -1 Uk+f 0 Uk f4N-2
wherey;, € R™, x; € R, ug € R™, anqlek € R are the Slupk) upk+1) - uptk+N— 1], (5b)
system output, state, input, and innovation, respectivel,
C andD are system matrices with appropriate dimensidhs. [ Uk—p  Uk—p+1 - Uk—p+N—1
is the Kalman filter gain. To establish statistical consistency of Uk—p+1 Uk—p+2 °*  Uk—p4N
the SIM, we introduce following assumptions: Up= . . . . (5¢)
(A1) The eigenvalues of — K C are strictly inside the unit Lo Wkttt MktN-2
circle. Euptk—p) upk—p+1) - upk—p+N -1
(A2) The system is minimal in the sense that C) is observ- (5d)
able and(4, [B, K1) is controllable. Similar formulations are made fafy, Y,, E;, and E,,. The
(A3) The innovation sequencg is a stationary, zero mean, giate sequences are defined as ‘ ‘
white-noise process with second order moments
E(ereT) = Roy, Xie = [Xks Xk 25 - - > XepN—1], (6a)
Xi—p = [Xk—p» Xk—p+1s - -+ » Xk—p+-N—1]- (6b)

whereg;; is the Kronecker delta.
(A4) The inputy; and innovation sequeneg are uncorrelated Subspace identification consists of estimating the extended ob-
for Vk andV/, i.e., the system operates in open loop. servability matrix first and then the model parameters.
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2.2. Analysis of conventional SIMs

As the first step, SIMs minimize the following objective func-

tion (Van Overschee & De Moor, 1996

S

(LY L? L3 = arg min|Y; — LYY, — L2U, — L3U|%)

N-1
= arg min Z yrtk+j)
j=0
ypk—p+ )7
—[L' L? L3 wupk = p+ ) (7
up(k+j)

whereu s, up,, yr, andy, are
columns of the corresponding

defined in (5b) and (5d) as
data matrices.

Denoting
— 7l 1 1
L1, Lip Ly, ‘L%‘
1 1 1 1
1 Ly Ly sz N L3
L= = , (8a)
i1t L1 Lt
il S fp- /
— 72 2 2 =
Ly Lp Ly, r L2
2 2 2 2
) Ly Lo sz . L5
L? = 2 , (8b)
12, 12 L2 L23 ]
= B fp- I
- 73 3 3
L, Ly, Llf ‘L?‘
3 3 3 3
3 Ly Ly sz . L3
L° = = , (8c)
13, 13 L3 L3 ]
et A b ff- !

the above problem is equivalent tgeparate sub-problems:

[L} L2 L}
N-1
=arg mn Vit j+i—1

j=0

— . 2
yplk—p+j)
—[L} L2 L2]| upk—p+ ) 9)

L upk+j)

fori =1,..., f, this is to say thaf different ARX mod-
els are estimated from data. Consider tttesubproblem and
spell out the nature of the terﬂfuf (k + j). This subproblem

2045
corresponds to the model
1 29| ypk—p) 3
Yk+i-1=[L; Lj] [uf,(k _ p)] + L3u g (k) + vy
| R 2 RO Py 5
= Ly up(k -p) i1Uk i2Uk+1
+ -+ Lf’iuk+i—1
f
+ Z L?juk+j_1+vk. (20)

j=i+l

Note that the summation in (10) represents a non-causal rela-
tion from u to y. That is,Ll?”j are estimated even though it is

known thatLl.3< =0 for j > i. The matrixL?3 is, in other words,
block lower triangular However, this information is not nor-
mally taken care of in (7), as pointed out$Mmi and Macgregor
(2001) While there is no problem from a consistency point of
view given proper excitation of the input, known parameters
are estimated from data.

Shi (2001)proposes an algorithm known @&V Ay that
removes the impact of future input from the future output us-
ing pre-estimated Markov parameters and then performs sub-
space projectionsshi (2001)further shows that this procedure
achieves consistendyarimore (2004)argues that th€ V Ay,
was implemented in Adaptx and that it is efficient, but he does
not discuss the impact of imperfect pre-estimates. Therefore,
we can make the following statements about the typical SIM
formulation in general.

1. The model format used in SIM during the projection step is
non-causal. This would result in non-causal models in the
projection step. Although the non-causal terms are ignored
at the step to estimat®, D, all the model parameters es-
timate have inflated variance due to the fact that extra and
unnecessary terms are included in the model.

2. Because of the extra terms that turn out to be ‘future’ inputs
relative to the output, SIMs in general have problems with
closed-loop data using direct identification methods. Most
SIMs usually project out/; as follows:
Yyl =Ty Xilly, + GrEflly (11)
Wherenif =1 - U;(UfU;)_lUf. Because of the non-
causal terms in the modeﬂl/N)EfU} # 0asN — o
for closed-loop data. As a consequence, many SIMs fail to
work on closed-loop data, except for a few SIM algorithms
that avoid this projectionGhou & Verhaegen, 1997; Wang
& Qin, 2002.

3. Becausd/; contains extra rows due to the extra terms, the
projection in (11) tends to reduce the information content
unnecessarily even for open-loop data, leading to inefficient
use of the data.

4. These non-causal terms will have negligible coefficients only
when the number of data is very large and process is well
excited. For a limited number of samples or non-white input
signals, SIM algorithms tend to have large estimation errors.
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To avoid these problems the SIM model must not include3.1. PARSIM algorithms
these non-causal termBgternell et al. (1996propose a few
methods to exclude these extra terms. Specially, they recom- By eliminatinge;, in the innovation model through iteration,
mend a two steps procedure: (i) use a conventional (uncontis straightforward to derive the following relatioKifudsen,
strained) SIM to estimate the deterministic Markov parameter2001):
CA'~1B; and (i) form H + with these Markov parameters to »
ensure that it is lower triangular and then estimate the extendelt = LZp + Ak Xi—p, (15)
observability matrix. We propose a parallel and a sequential img e
plementation of a causal subspace identification method (PAR-

SIM) which remove these non-causal terms by enforcing aLzé[Ap(AK, K) 4,(Ak, Bx)], (16a)
lower triangular structure i3 and hence ofi; at every step

of the SIM procedure. By enforcing a lower-triangular struc-4,(A. B) £[A?"'B ... AB B, (16b)
ture, we reduce the number of estimated parameters in this stage ,

by f(f — 1)/2. The parallel PARSIM (PARSIM-P) method 2k =4 = KC, (16¢)
involves a bank of LS problems in parallel, while the sequen-p. 2 p _ kp, (16d)
tial PARSIM (PARSIM-S) involves a bank of LS problems se-

quentially. Optimal weighting is derived for the PARSIM al- Z, = [Y; U;]T. (16e)

gorithms. An optimal estimate of thB, D matrices is given

using the Kalman filter structure. Substituting this equation into (14), we obtain

Ypi=Tpil:Zy+ T iAY Xi—p + HyiUi + G fi E; 17)

3. Subspace identification avoiding non-causal terms fori=1,2,..., f. Note the second term on the RHS of (17)

tends to zero ap tends to infinity under Assumption A1. Now

The key idea in the proposed method is to exclude the nonge haye the following parallel PARSIM algorithm to estimate
causal terms o/ mentioned in Section 2. To accomplish Iy andHyi
l [

this, we partition the extended state space model row-wise as

follows: Algorithm 1. Parallel PARSIM (PARSIM-P)
}{fl gfl 1. Perform the following LS estimates, foe=1, 2, ..., f,
2 2
Yy= f N f ,i=12...,f, (12) 7 t
: : [I'yil; Hyi]l= Yfi|:UIi| (18)
Yrr Ygi :
WhereY i = [yirio1 Yeti -+ Yesnsi_2]. PartitionU; and where[-]" stands for the Moo_rg Penrose pseudo-inversion.
E s inasimilar way to defin& s;, U;, E 7;, andE;, respectively, Stack!y; L. together to obtaid’yL; as
fori=12,..., f. Denote further fflb
IA—‘. oL .
Iy P2 FL (19)
Iy2 :
I'yr 2. Perform SVD for the following weighted matrix:
Hy;2[CAI™2B ... CB D] (13b) Wil LYW = Up SV, + e, (20)
£[Hi—1 --- Hi Hol, (13c) whereWs is non-singular and., W, does not lose ranky/,,,
' S, andV,, are associated to the firstargest singular values.
Gpi= [CAT2K ... CK I] (13d) The residual terma stands for the product of the remaining
2(G;_1 --- G1 Gol, (13e) singular vectors and singular values. We choose

, & w-lp ¢/2
wherel ;; =CA'~1, andH; andG; are the Markov parameters Fy=W;"UnSn (21)
for the deterministic input and innovation sequence, respec- from which the estimate ofA and C can be obtained

tively. We have the following equations by partitioning (2a), (Verhaegen, 1994

3. The estimate oB andD is discussed in the next section
Yii=TyfiXy +HypiUi + GyiE (14) using a Kalman filter formulation.
fori =1,2,..., f. Note that each of the above equations is Note that the proposed parallel PARSIM givesnsis-

guaranteed causal. tent estimates forl'y and H;_1, Vi = 1,2, ..., f under the
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assumptions stated in Section 2. To rationalize the statemerfection 2. The proof is similar to that of PARSIM-P, therefore,
it is sufficient to show that a& — oo, we omit it in the paper.

(yily Hyil > [file Hyil, (22)  Remark 1. For finite past horizomp the algorithm is biased,
but the bias decays to zero exponentially withlf p is too
large in practice, however, large variance is expected for the
estimates. Therefore, it is necessary in practice to use a finite
p for the best trade-off. Cross-validation can be used to select
an optimalp.

where[I'; L. Hy;]is calculated according to (18). Assump-
tion Al implies that the initial state has negligible effect on
the estimate with sufficient large as shown in (17). From A4
we have(l/N)EiZlT, — 0 and(1/N)E; Ul.T — 0asN — co.
Substituting (17) withp — oo into (18) leads to

. . 7 7 1 71t Remark 2. The parallel PARSIM requires that no correlation
(I'¢iL; Hpil=I[IfiL, Hyil [ Ul-)} [ Uf’] +GiE; [ U{’] exists between future; and pastk; to be consistent, which is
! ! . ! only valid under open loop condition, therefore, the PARSIM-
L. Hyl+ G 1 AR P algorithms are biased for direct closed-loop identification. To
Jitz i P\~ ™| U make it applicable to closed-loop data, an innovation estimation
approach is proposed @Qin and Ljung (2003a)
172,172, 1"
x N| U U; Remark 3. The Markov parameters{;_1, Vi=1,2, ..., f,
S [TpiL, Hyil can be estimatgd directly from the SIMs without the knowledge
SR of system matricegA, B, C, D). Meanwhile, the low triangu-
asN — oo. Assumption A5 guarantees that all system modedar structure of the Toeplitz matrix{ s, is conserved.
are sufficiently excited so that the matrix inverse in the above
equation exists. It has been shownKinudsen (2001jhat A2  3.2. Improved variance of PARSIM algorithms
is needed forL, to have full row rank and”; to have full
column rank. Therefore, the SVD step in the PARSIM-P algo- After presenting the PARSIM algorithms, we analyze the
rithm guarantee thal ; and I’y have the same column space variance of the PARSIM estimates relative to that of conven-
asymptotically. tional SIM algorithms. For conventional SIMs the asymptotic
The PARSIM-P algorithm estimates the model parameters ivariance of the model estimates is derivedBiauer and Jans-
parallel which re-estimate some of the Markov parameters ison (2000) Bauer and Ljung (2002)Chiuso and Picci (2004)
Hy; repeatedly. To avoid this we rewrite (17) by ignoring the These analyses provide insight into what contribute to the vari-

AR term ance of the estimates.
In this subsection we provide a covariance equality for PAR-
Ypi=Ty¢iL;Zp+ Hi 1Up1+ Hf(i—l)[U}z U}i]T SIM estimates by interpreting the sub-space projections in the
+ G i E;, generalized least squares (GLS) framewdvlafdia, Kent, &

] _ ) Bibby, 1979. For theith block row we explained that conven-
where H; ; is defined in (13c). If we perform the above pro- tjonal SIMs use model (10) but the process is actually (17). By

J:ections sequentially fof = 1,2, ..., f, Hy-1) is estimated  comparing (10) with (17) whep is large we have,
in the (i — Dth step.I'y; and H;_; are the only unknown at 1o
theith step. [Ly L71=1TyiL,
Algorithm 2. Sequential PARSIM (PARSIM-S) L?:[Hf,- :0 ... 0]
1. Perform the following LS foi =1, d
g Vg = Z Gi—jgk-',-j—l-
Fpate A =] 2o T e
1 11=Yn .
SRR T ! Ur1 Note thatv, is auto-correlated, therefore, the SIM projections
2. Perform the following causal projection foe=2, ..., f do not fit into the ML framework. Denoting
P A coMug] = 2y,
(F'yi Hioal=(Ysi — Hpq-p)Ufy -+ URTT ’
7 1t Vii=GyiEi
P
- [Ufl] ' ®9 and
i : T
Stackis; L, together as Eq. (19). VN =vedVy),
3. Same as Step 2 in Algorithm 1. whereveq) of a matrix forms a long column vector by stacking

. . . . the columns of that matrix, we have
The sequential PARSIM givesonsistentestimates forl” s

and H;_1, Vi =1,2,..., f under the assumptions stated in cov(?"; n) =2, ® Iy.
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With this notation we can convert the PARSIM equation (17)Noticing that®,; y is strictly positive definite due to the inverse

into
Yin=Z1LN01+ 7V inN, (25)
where

YiN = veC(Y}i),

Tin =112} U,

01 =vec([I' L, Hplh).

Similarly, the conventional SIM equation for tht block row
(10) can be converted to

Yin =Z1LN0L+ ZoN02+ Vi N, (26)
where

Z2n=1®Wjiy Ufara -+ Ufyl

is the matrix of non-causal input data and
LN

is the vector of extra parameters in conventional SIMs. No

3 3

of the covariance matrix, we have

cov(@/l’N) 2cov((§1’N) (29)
regardless oN and the equality holds only if1o 5y = 0. It is
noted further thasl_fN S12,n In (28) is the regression coefficient
matrix of Z'2 y on 2’1, x, which is not zero for colored inputs.
We can only compare the variance @f rigorously as shown
above. Fol’ r estimate fronf); we can only say that PARSIM
estimate likely leads to a better estimate of the true observability
subspace, but we cannot compare the variance since it depends
on the basis. Similarly we cannot compare the variance of the
system matrices such &andA.

With this we conclude that the PARSIM estimates of the
Markov parameters generally have a smaller variance than those
of the conventional SIM estimates for ahly The estimates of
the A andC matrices are unique functions (in the chosen basis)
of @1,1\" It thus follows from (29) and the Gauss approximations
formula that the asymptotic covariancesfoédndC are also as
good or better with the PARSIM approach. The Monte-Carlo
study in Section 5.2 provides strong indications that this indeed

Ws the case.

we state that the LS solutions (17) for PARSIMs and (10) for
conventional SIMs are identical to the GLS solution to (25) and

(26), respectivelyNlardia et al., 1978 The estimates from both

3.3. Determination of observability matrix with optimal

conventional SIMs and PARSIMs are consistent, which is not'€ighting
of concern here. The question is whether PARSIM estimates

have smaller variance than conventional SIMs regardless of thde_

data length\N.
From Mardia et al. (1979)ve know that the GLS interpre-
tation of PARSIM estimates leads to

cov(lyn) = (X N(Zo ® I) 2172
wherel y is the PARSIM estimate fofl; and
é/
()
GZ,N
= ([ X1y LN (Zy @ IN) 21w ZanD7E

where@/1 y IS the conventional SIM estimate 6.

To sirﬁplify the notation, we denote
Siin=XinN(Ey @ IN) 2 N (27)

for i, j =1, 2. Then the covariance expressions become

5 -1
cov(f1nN) = S1in
| S1uny Sien |

MR EE
cov | | i =| T
([6/2,1\, Sion  S22n

from which it is easy to show that

_ | Pun Pr2n
45121\, D22 N

Al _ _ _
cov(fy y) = P11y = Si1y + Sll%NSlZN‘DZZNSIz,NSlLlN-
Therefore,

N ~
cov(lly ) — cov(01,n) = SiiyS12v P22 N STo v Siiy-  (28)

In the conventional SIM formulation under open-loop con-

itions,

Eflly, - Ef asN — oo (30)
sinceE s is uncorrelated wittU ¢. Therefore, for largéN (11)
becomes

1~ 1
YfHUfNFkaHUf—i-GfEf. (31)
Post-multiplyingZI to (31) eliminate the noise term for large
Nl

YO, Z)

~ 1 T
Uy pNFkaH Z

Ur=p: (32)

Van Overschee and De Moor (199%8)ow that all SIM methods
perform SVD on the following weighted matrix:

1 5T 1 5T
WiY Il Z,We = Wil p XilIly; Z), We, (33)
whereW, and W, are the row and column weighting matrices,
respectively. In CVAW,; (YfﬂéfY]T)_l/z which basically
normalizes the output variableSustafsson (2003hows that
an approximately optimal weighting fav. is

T T T T\-1/2
We=(Z,Z) — Z,U[(UsUNUFZ})™Y

= (Z,ITy, Z,) Y2, (34)

which is used in CVA and MOESP. Substituting (34) into
(33), and replacingl; with L Z, as instrumental variables,
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we obtain, From Egs. (41) and (42) and using the fact tigaf is an or-
WrYbe/- Z,T,Wc _ WrFszZpr,.Z,T,(ZpHL,. Z,T,)’l/z ttwonormal matrix, we choose

_ WrFsz(Zpﬂbf Znie2, (35) E} = Qs, (44a)
Comparing (35) with (20), the equivalent weighings for theé? = Raa. (44b)
PARSIMs algorithm are Therefore,
Wi =W, (36) F= R33(1:ny,1:ny) (45)
Wa=(Z,lly, Z))Y?. (37)  andK can be calculated fror6” using[";.

Gustafsson and Rao (2002how that the row-weightingVy o

has no influence on the asymptotic accuracy of the estimate®2- Determination oB, D

observability matrix. Our simulation experience shows at . . . ) )
has negligible influence on the accuracy of the estimated system With A andC estimates, Section 10.6 ijung (1999b)gives
matrices as well. Therefore, we suggest to Uge= I in the ~ an effective approach to estimaBeand D with an output er-

PARSIM algorithms. ror formulation. Note that there is a choice whether or not to
pre-whiten the residuals, as discussed, e.gLjumg (1999a)

4. Numerical implementation of PARSIMs This choice also corresponds to whettfeicus’  is set to
‘simulation’ or ‘prediction’ (default) in the N4SID

Since the projections in the PARSIM algorithms bear sim-function of the System Identification Toolbox. Here, we give a
ilarity to the standard SIMs such as MOESP, it is straightfor-modified approach to estimatirigy D and the initial state op-
ward to implement these parallel or sequential projections ugimally usingA, C, K andF for the general innovation form.
ing QR decomposition@in & Ljung, 2003B. In this section, a  Since the initial state is estimated this step does not introduce
new approach to calculate tiBe D matrices is derived by pre- @ bias for finitep.
whitening the equation error of the general state-space model. From the innovation form of the system we have

Xk+1 = Agxk + Bgup + Ky, (46)

4.1. QR implementation for K
where A; and By are defined in (16). The process output can

Oncel s is known, the Kalman filter gaik can be estimated Pe represented as

I(GE)alleUt(s)mo, 1996. With a largep, substituting (15) into (2) ye=C(ql — Ag)"txo + [C(qI — Ax) " Bk + Dluy

+Cql — AR) 'Ky + e (47)
Yy=1IyL.Z,+HfUs +GrEy. (38) or
Therefore, [I —C(ql — Ag) K1y
_ _ -1 _ -1
ané,, =GfEfHép =GEf (39) =C(ql — Ag) “xo+[C(gl — Ag) "Bk + D]uy + ex
Ur Uy (48)
sinceE s is not correlated withZ, andU in open loop. Per-  usingey = Fe; wheree; has an identity covariance matrix, and
forming QR decomposition, defining
[z,,] [Ru } [Ql} e =F I = C(ql — Ag) " K1y, (49a)
Ur |=| Raa Rz 02 (40) 1 1
Yy R31 Rz Raz3 03 G(g)=F "C(ql — Ag)™ ", (49b)
then D*=F71D (49c)
R3303=GEy. (41)  Wwe obtain,
Denotingex = Fej such thatouv(e}) = I, from Assumption Vi = G(‘])BKL‘? + D uy + G(Q)XOik +e
A3 we haveF FT = R. Using this notation we have =G(q) ® uy vec(Bk) + In, ® uy vec(D*)
G 0 *, 50
GrEf=GE%, (42) @0kt (50)
wherevec(Bg) andvec(D*) are vectorizedBx and D* ma-
where trices along the rowsy; is the Kronecker delta function. Now
F 0 0 vec(Bg), vec(D*) andxg can be estimated using LS from the
G* CKF F 0 above equation. ThB, D matrices can be backed out as
= : : .o A R
: : o D = FD*, 5l1a
CA/2KF CA/B3KF ... F (>1a)

c annynyf_ (43) é = é[( + Kb (51b)
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5. Simulation and industrial case studies 100

= PEM

In this section, the results of two simulation cases and an 7 N4SIDICVA
industrial case are reported to demonstrate the efficiency of - Eﬁx:m:z
proposed PARSIMs with comparison to N4SID in the System
Identification Toolbox (Version 6.0) of Matlab. The first simu-
lation is a second order single input and single output (SISO)
counter example frordansson and Wahlberg (1998he sec-
ond is a Monte-Carlo simulation study over randomly chosen
fourth order systems with two inputs and two outputs. The in-
dustrial case study is a8 3 four-stage evaporator frovan
Overschee and De Moor (1996)

P (N)

102 -
102 103 10*

5.1. Simulation example 1 Sample Size

The counter-example proposed dansson and Wahlberg Fig. 1. Asymptotic pole estimation results of the SISO counter example.
(1998)is used here to test the effectiveness of the proposed
parallel PARSIM methods

_[2r —? 1 k1
Xpp1= [ 10 |®tT| o |met Ky | (52a) 100 —
vk =12 —1lxx + e, (52b) T pasDievA
-o- PARSIM-S

where the variance of the noise proceas(e;) = 217.1,y =
0.9184,k1 =—0.21 andkp, = —0.559 are used here. The system 107
input is a high-pass filter with unit white Gaussian noise as
input.

ue = 1=y H*A 4y H%. 102}

For comparison we use the N4SID routine in Matlab, which
actually implemented the CVA weighting, as the standard SIM
algorithm. PEM implemented as the ARMAX routine in Mat-

Z(N)

lab’s System ldentification Toolbox is used as a benchmark. 10-3102 1'03 104
T_he performance of thg methods is investig_ated_ with two in- Sample Size
dices, the standard deviation of the pole estimation errors and
that of the zero estimation errors, Fig. 2. Asymptotic zero estimation results of the SISO counter example.
1M
P(N) == 1P = Pollz, (53a)
k=1
" chosen fourth order systems with two inputs and two outputs,
1 ’ estimated with the different methods. Since the motivation for
Z(N) =+ D 12}~ Zollz, (53b) ton . .
M Pt the causal parameterization is to provide a better estimate of the

. observability matrix, we concentrate on the estimates ofthe
whereM = 200 is the number of independent simulatioﬁﬁ,. matrix, viz. its eigenvalues. The input was chosen as a random
and ZX, are the estimated poles and zeros wittsamples at ~ binary signal with power up to 0.1 of the Nyquist frequency, and
kth simulation, respectivelyPy and Zo are the true poles and normal white noise with 0.1 times the unit covariance matrix
zeros of the system, respectively. We chopse 7, f =5 for ~ was added to the output.

PARSIMs. The results of the simulations are showiFigs. 1 The system and the input/output data were generated by Mat-
and 2, which show the asymptotical performance of differentlab as follows:
algorithms. The results show that the PARSIMs outperform )
N4SID for both pole and zero estimation, and the zero estimates M0 = idss(drss(4,2,2));
of PARSIMs are very close to those of PEM. m0.d = zeros(2,2);
mO0.b = 5*randn(4,2);

u =idinput([400,2],'rbs’,[0 0.1]);
y =sim(mO,u) + 0.1*randn(400,2);

To study the potential benefits of the causal parameterization For each data set a model was estimated using Matlab’s
in PARSIMs, we perform a Monte-Carlo study over randomly standard N4SID/CVA routine as well as using PARSIM-S and

5.2. Simulation example 2



S.J. Qin et al. / Automatica 41 (2005) 2043—-2053 2051

15 T T T T T - - - : Table 1
. The model fit as measured 7 in (55) of identified models for simu-
L4y ; * lation and prediction of validation data for the evaporatm? (ess than
13} . .o * zero is indicated by ‘-)
1.2} * * 7 1 step 20 steps 100 steps Simulation
oo « * ahead ahead ahead
L Fl p
t tese* ¥ : ** * *’?3?* *: *oxx *; *:* ¥ *:ﬁ **#&*
P L w KA N m*: Calllt” y1 74.79 60.16 49.64 44.35 N4SID
* LI * * * 74.65 61.20 54.14 51.24 PARSIM-P
097 1 7452 60.75 53.87 48.16 PARSIM-S
08} * . 2 62.12 60.27 60.12 58.15 N4SID
* * 61.62 60.07 60.28 59.97 PARSIM-P
0.71 1 6143  60.43 60.01 59.55 PARSIM-S
06} ] v3 84.50 57.27 14.27 — N4SID
05 84.47 60.60 42.06 30.35 PARSIM-P
~“0 10 20 30 40 50 60 70 80 90 100 84.47 60.64 34.49 15.35 PARSIM-S

Fig. 3. The valuer defined by (54) for the 100 randomly chosen systems

as defined in the text. The number of realizations for each sydwmyas

25. (The value for system 31 is 4.46 and out of range.) PARSIM-P is better

than N4SID/CVA in 84 of the 100 cases. The average excess of standakaike information criterion (AIC) and examining the singular

deviation for N4SID/CVA is 91%. values an 11th order system is chosen.
The coefficient of determination

Zilye @) — e ()1?
PARSIM-P. The future horizonf was chosen as 20 and the R? = (1— ’[yk(l). yk_(l)z] ) x 100
past horizonf) was chosen as 10 in all cases. Zilye(@) =yl

For each method the standard deviations (absolute valueg} yalidation data is used as the metric for comparing different

(55)

realizations in the usual way or predicted model output and the mean of the output for the
oA PARSINVEP kth output variables, respectively. The result of simulation and
o, G , 1=12234. various horizons of prediction for different SIMs is shown in
Table 1

As PARSIM-S and PARSIM-P gave nearly the same results, we From the result, we can see that all methods work well for
only compare the performance of N4SID/CVA and PARSIM- one-step ahead predictions. As the prediction horizon increases,
P in the paper. The mean of the ratios of the accuracy of ththe prediction accuracy decreases, as expected. In general, the

methods was computed PARSIM algorithms outperform the N4SID on long-term pre-
dictions. For simulation error N4SID failed oyy. While the
14 on N4SID results are almost the same as the PARSIM results for
r=2 Z m (54) 1 and 20 steps ahead predictions_,, t_he PARS_IMS pr_oduce better
i=1 i results for 100 steps ahead prediction and simulation.

as a measure of the relative accuracy of the two methods i@. Conclusions
estimating the poles/eigenvalues. A plotradver the 100 dif-
ferent systems witlid =25 is given inFig. 3. It is seen that the
enforcement of the causal model when estimating the obser
ability matrix gives a noticeable improvement in the standar
deviation of the eigenvalue estimates.

In this paper, a novel sub-space identification approach is
roposed to enforce the casuality of high-order ARX models.
he key idea is to avoid the estimation of parameters that are

known to be zero. This means that a lower triangular struc-
ture of an estimated matrix must be enforced which leads to
5.3. Industrial case study somewhat more complicated calculations. Also other authors

have noted the potential problems that arise from these non-

In this subsection, the experimental data from a four-stageausal elementd.jung and McKelvey (1996have noted that

evaporator are analyzedgn Overschee & De Moor, 1996The  the problems with closed-loop data have their roots in these
three inputs are feed flow, vapor flow to the first evaporator stageon-causal terms. They suggest to use explicitly compkted
and cooling water flow. The three outputs are the dry mattestep ahead predictions from a single causal ARX-model. This
content, the flow and temperature of the outcoming product. This very different from the algorithm suggested in this paper,
time series plot of the data indicates that the inputs are PRB@nd apparently it does not make the best use of the observed
There are 6305 experimental data points, we use the first 315#ata. The new algorithms, which fall into the subspace fitting
points for estimation and the rest of them for validation. Weframework, are shown to be consistent under mild assumptions
choosep =30, f =20 for PARSIMs and N4SID. By using the and applicable to a general state-space model structure.
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We have shown that the variance of the observability matrixjung, L. (1999a). Estimation focus in system identification: Prefiltering,
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