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Topic: System identification and optimal estimation

Solution proposal: Exercise 6, state estimation and kalman
filter

Task 1

a) The Riccati equation with c = 1 becomes

2aX − d2W−1X2 + V = 0 (1)

where we here are using V = q0 and W = r0. This gives the solution

X =
ar0

d2
+

√
a2r2

0

d4
+

q0r0

d2
(2)

The Kalman filter gain is then

K = XDT W−1 =
1
d
(a +

√
a2 + d2

q0

r0
) (3)

In case when V = q2
0, W = r2

0 and c 6= 1 as in the exercise text we have

K = XDT W−1 =
1
d
(a +

√
a2 + (dc)2

V

W
) (4)

The kalman filter is then given by

˙̂x = Ax̂ + Bu + K(y −Dx̂), (5)
ŷ = Dx̂. (6)

Note that we need an initial value for the state estimate, x̂(t0), in order to start
the filter. This initial value can e.g. be specified from process knowledge, however,
errors in the initial value will die out because of the fact thet the filter is stable.

b) The dynamics of the filter is given by the differential equation

˙̂x = (A−KD)x̂ + Bu + Ky, (7)

We are using the above in Step 1a) and find that

˙̂x = −
√

a2 + d2
q0

r0
x̂ + bu + Ky. (8)
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As we see, the filter dynamics becomes faster when the ratio q0

r0
(or q2

0

r2
0
) increases.

It is this ratio which is the key in the filter dynamics. Note also that we in many
circumstances can look at this ratio as a tuning factor in the filter, i.e. so that we
can choose the ratio q0

r0
(or q2

0

r2
0
) so that the estimate state x̂ is sufficient. We are

often putting r0 = 1 and tuning q0 in order to obtain a sufficient velocity in the state
estimate.

Task 2 2

a) The Kalman filter on apriori aposteriori form for a linear time invariant system is
given by

ȳk = Dx̄k (9)
x̂k = x̄k + K(yk − ȳk (10)

x̄k+1 = Ax̂k + Buk (11)

We need an initial value for x̄0 in order to start up the estimator at time k = 0.

Task 3

Given the system

ẋ = ax + bu + cv (12)
y = x + w (13)

The disturbance v is colored with non-zero mean. We are modelling v as an integrator
exited by a zero mean white noise process dv, i.e.,

v̇ = dv (14)

We then have the following augmented linear state space model
[

ẋ
v̇

]
=

[
a c
0 0

] [
x
v

]
+

[
b
0

]
u +

[
0
1

]
dv (15)

y =
[

1 0
] [

x
v

]
+ w (16)

We want to find the continuous kalman filter. the model is of the form

˙̃x = Ax̃ + Bu + Cdv (17)
y = Dx̃ + w (18)

The continuous and stationary Kalman filter is given by

AX + XAT −XDT W−1DX + CV CT = 0 (19)
K = XDT W−1 (20)
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where W is the covariance of the measurements noise and V is the covariance of the process
noise. We have

W = r2
0 (21)

V = q2
0 = E(dvdvT ) (22)

Some computations gives
[

2(ax11 + cx21) ax21 + cx22

ax21 + cx22 0

]
−W−1

[
x2

11 x11x21

x11x21 x2
21

]
+

[
0 0
0 V

]
=

[
0 0
0 0

]
(23)

Only two of the three above equations are necessary in order to compute x11 and x21, i.e.,

2(ax11 + cx21)−W−1x2
11 = 0 (24)

−W−1x2
21 + V = 0 (25)

This gives

x21 =
√

V W (26)

x11 =
a +

√
(a2 + 2cW−1

√
V W )

W−1
(27)

The Kalman filter gain matrix is given by

K = XDT W−1 =
[

k11

k21

]
=

[
x11W

−1

x21W
−1

]
(28)

This gives

k11 = a +

√
(a2 + 2c

√
V

W
) (29)

k21 =

√
V

W
(30)

We may also substitute for the variances V and W , i.e.,

k11 = a +
√

(a2 + 2c
q0

r0
) (31)

k21 =
q0

r0
(32)

As we see, it is the ratio between the standard deviation of the process noise, q0, (or
the variance V = q2

0) and the standard deviation of the measurements noise, r0 (or the
variance W = r2

0) which influences upon the elements in the Kalman filter gain K. As we
see, k21, increases when the ratio q0

r0
increases, i.e. a large process noise variance dives large

gain, but large measurements noise variance gives small gain. Large measurements noise
implies an uncertain measurement and the Kalman filter will relay more on the model,
and therefore reduce the Kalman filter gain, K.
The Kalman filter is defined by the following equations

˙̃̂
x = Aˆ̃x + Bu + K(y − ŷ) (33)
ŷ = Dˆ̃x (34)
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We are guaranteed stability of the estimator when the pair (A,D) is observable and V
and W are positive definite, and the assumptions for stability in LQ optimal systems are
satisfied. The optimal estimator problem is dual to optimal LQ control. We can look at
the eigenvalues of the estimator by analyzing

˙̃̂
x = (A−KD)ˆ̃x + Bu + Ky (35)
ŷ = Dˆ̃x (36)

The filter or estimator can be looked upon as a separate system driven by measurements
noise, y, and inputs u. The dynamics of this system is described by the eigenvalues of
A−KD. Vw have

A−KD =
[

f − k11 c
−k21 0

]
(37)

we will here not go into further details of how the eigenvalues vary with V and W . But we
will mention that we will obtain more degrees in freedom in order to control the dynamics
of the filter if we instead describe the system as follows

ẋ = ax + bu + cv + dx (38)
y = x + w (39)

where dx is unknown zero mean white noise with variance Vx. dx may be interpreted
as uncertainity resulting from e.g. un modelled effects. The augmented model is then
influenced of both dx and dv. The augmented model will then have the covariance matrix

Ṽ =
[

Vx 0
0 V

]
(40)

Hence, we have obtained an additional degree of freedom which can be used to influence
the estimator dynamics, namely the parameter Vx. We may now put (40) into Equation
(23). The procedure for computing the Kalman filter gain is the same as that given above.
It is important to note that we may obtain better state estimates if we are assuming that
all state variable equations are influenced by noise.
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Figure 1: Simulation results with variances W = 1 and V = 1. See also the MATLAB
script file ov9s.m.

Figure 2: Simulation results with variances W = 1 and V = 10. See also the MATLAB
script file ov9s.m.
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% OV9S.M %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Formaal %
% Script for oving 9 oppgave 2 %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
a=-1; b=0.5; d=1; c=0.6; % Prosessmodellen
W=1; % Vekt"matrise" for maalestoeyen, W=E(w w’)
V=10.0; % Vekt "matrise" for stoeyen, V=E(v v’)
A=[a,c;0,0]; C=[0;1]; D=[1,0]; % Augmenterte systemmatriser
[l,x]=lqe(A,C,D,V,W); % Control system toolbox finksjon
k1=l(1,1); % Kalman forsterkning for estimering av x
k2=l(2,1); % Kalman forsterkning for estimering av v

at=[a,0,0;k1,a-k1,c;k2,-k2,0]; % Augmenter modell for simulering av
bt=[b;b;0]; % system og estimator med feks. lsim.
ct=[c;0;0];
dt=eye(3);
et=zeros(3,2);

N=1200; % Antall sampler
v=ones(N,1); % Simulerer med et sprang i forstyrrelsen
v(50:600,1)=v(50:600,1)+ones(551,1)*0.1;% Sprang ved sample 50
u=zeros(N,1); % Null paadrag, annet alternativ er randn(N,1)
t=0:N-1; t=t’/50;
x0=[0.6;0.6;1.0]; % Initialverdier, stasjonaerverdier
y=lsim(at,[bt,ct],dt,et,[u,v],t,x0); %Simulerer

subplot(211), plot(t,[y(:,1),y(:,2)]) % Plotter resultatene
grid
title(’x1 og hat(x1): Tilstand og estimert tilstand’)
subplot(212), plot(t,[y(:,3),v])
grid
title(’v og hat(v): Forstyrrelsen og estimert forstyrrelse’)
xlabel(’[time (units)]’)
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