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Abstract The SIMC method for PID controller tuning (Skogestad 2003) has al-
ready found widespread industrial usage in Norway. This chapter gives an updated
overview of the method, mainly from a user’s point of view. The basis for the SIMC
method is a first-order plus time delay model, and we present a new effective method
to obtain the model from a simple closed-loop experiment. An important advantage
of the SIMC rule is that there is a single tuning parameter (τc) that gives a good
balance between the PID parameters (Kc,τI ,τD), and which can be adjusted to get
a desired trade-off between performance (“tight” control) and robustness (“smooth”
control). Compared to the original paper of Skogestad (2003), the choice of the
tuning parameter τc is discussed in more detail, and lower and upper limits are
presented for tight and smooth tuning, respectively. Finally, the optimality of the
SIMC PI rules is studied by comparing the performance (IAE) versus robustness
(Ms) trade-off with the Pareto-optimal curve. The difference is small which leads to
the conclusion that the SIMC rules are close to optimal. The only exception is for
pure time delay processes, so we introduce the “improved” SIMC rule to improve
the performance for this case.
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1 Introduction

Although the proportional-integral-derivative (PID) controller has only three param-
eters, it is not easy, without a systematic procedure, to find good values (settings)
for them. In fact, a visit to a process plant will usually show that a large number
of the PID controllers are poorly tuned. The tuning rules presented in this chapter
have developed mainly as a result of teaching this material, where there are several
objectives:

1. The tuning rules should be well motivated, and preferably model-based and ana-
lytically derived.

2. They should be simple and easy to memorize.
3. They should work well on a wide range of processes.

In this paper the simple two-step SIMC procedure (Skogestad 2003) that satisfies
these objectives is summarized:

Step 1. Obtain a first- or second-order plus delay model.
Step 2. Derive model-based controller settings. PI-settings result if we start from

a first-order model, whereas PID-settings result from a second-order model.

The SIMC method is based on classical ideas presented earlier by Ziegler and
Nichols (1942), the IMC PID-tuning paper by Rivera et al. (1986), and the closely
related direct synthesis tuning rules in the book by Smith and Corripio (1985). The
Ziegler-Nichols settings result in a very good disturbance response for integrating
processes, but are otherwise known to result in rather aggressive settings (Tyreus
and Luyben 1992) (Astrom and Hagglund 1995), and also give poor performance
for processes with a dominant delay. On the other hand, the analytically derived
IMC-settings of Rivera et al. (1986) are known to result in poor disturbance re-
sponse for integrating processes (Chien and Fruehauf 1990), (Horn et al. 1996), but
are robust and generally give very good responses for setpoint changes. The SIMC
tuning rule presented in this chapter works well for both integrating and pure time
delay processes, and for both setpoints and load disturbances.

This chapter provides a summary of the original SIMC method and provides
some new results on obtaining the model from closed-loop data, and on the Pareto-
optimality of the SIMC method. There is some room for improvement for delay-
dominant processes, and at the end of the chapter “improved” SIMC rules are pre-
sented.

Notation. The notation is summarized in Figure 1. Here u is the manipulated
input (controller output), d the disturbance, y the controlled output, and ys the set-
point (reference) for the controlled output. g(s) = ∆y

∆u denotes the process transfer
function and c(s) is the feedback part of the controller. Note that all the variables u,
d and y are deviations from the initial steady state, but the ∆ used to indicate devi-
ation variables is usually omitted. Similarly, the Laplace variable s is often omitted
to simplify notation. The settings given in this chapter are for the series (cascade,
“interacting”) form PID controller:
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Fig. 1 Block diagram of feedback control system.
In this chapter we consider an input (“load”) disturbance (gd = g).

Series PID : c(s) = Kc ·
(

τIs+1
τIs

)
· (τDs+1) =

Kc

τIs

(
τIτDs2 +(τI + τD)s+1

)
(1)

where Kc is the controller gain, τI the integral time, and τD the derivative time. The
reason for using the series form is that the PID rules with derivative action are then
much simpler. The corresponding settings for the ideal (parallel form) PID controller
are easily obtained using (30).

Simulations. The following practical PID controller (series form) is used in the
simulations:

u(s) = Kc

(
τIs+1

τIs

)(
ys(s)−

τDs+1
(τD/N)s+1

y(s)
)

(2)

with N = 10. Note that we in order to avoid “derivative kick” do not differenti-
ate the setpoint in (2). In most cases we use PI-control, i.e. τD = 0, and the above
implementation issues and differences between series and ideal form do not apply.

2 Model approximation (Step 1)

The first step in the SIMC design procedure is to obtain an approximate first- or
second-order time delay model on the form

g1(s) =
k

τ1s+1
e−θs =

k′

s+1/τ1
e−θs (3)
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STEP IN INPUT u

RESULTING OUTPUT y

: Delay - Time where output does not change
1: Time constant - Additional time to reach 

63% of final change
k =  y(∞)/ u : Steady-state gain

Δy(∞)

Δu

Fig. 2 Open-loop step response experiment to obtain parameters k,τ1 and θ in first-order model
(3)

g2(s) =
k

(τ1s+1)(τ2s+1)
e−θs (4)

Thus, we need to estimate the following model information

• Plant gain, k
• Dominant lag time constant, τ1
• (Effective) time delay (dead time), θ

• Optional: Second-order lag time constant, τ2 (for dominant second-order
process for which τ2 > θ , approximately)

Such data may be obtained in many ways, three of which are discussed below.

1. From open-loop step response
2. From closed-loop setpoint response with P-controller
3. From detailed model: Approximation of effective delay using the half rule
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2.1 Model from open-loop step response

In practice, the model parameters for a first-order model are commonly obtained
from a step response experiment as shown in Figure 2. From a theoretical point of
view this may not be the most effective method, but it has the advantage of being
very simple to use and interpret.

For plants with a large time constant τ1, one has to wait a long time for the
process to settle. Fortunately, it is generally not necessary to run the experiment for
longer than about 10 times the effective delay (θ ). At this time, one may simply
stop the experiment and either extend the response “by hand” towards settling, or
approximate it as an integrating process (see Figure 3),

ke−θs

τ1s+1
≈ k′e−θs

s
(5)

where

• Slope, k′ def
= k/τ1

is the slope of the integrating response. The reason is that for lag-dominant pro-
cesses, i.e. for τ1 > 8θ approximately, the individual values of the time constant
τ1 and the gain k are not very important for controller design. Rather, their ratio k′

determines the PI-settings, as is clear from the SIMC tuning rules presented below.

Δy

Δt

Fig. 3 Open-loop step response experiment to obtain parameters k′ and θ in integrating model (5).

2.2 Model from closed-loop setpoint response

In some cases, open-loop responses may be difficult to obtain, and using closed-
loop data may be more effective. The most famous closed-loop experiment is the
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Ziegler-Nichols where the system is brought to sustained oscillations by use of a P-
only controller. One disadvantage with the method is that the system is brought to its
instability limit. Another disadvantage is that it does not work for a simple second-
order process. Finally, only two pieces of information are used (the controller gain
Ku and the ultimate period Pu), so the method cannot possibly work on a wide range
of first-order plus delay processes, which we know are described by three parameters
(k,τ1,θ ).

Yuwana and Seborg (1982), and more recently Shamsuzzoha and Skogestad
(2010), proposed a modification to the Ziegler-Nichols closed-loop experiment,
which does not suffer from these three disadvantages. Instead of bringing the sys-
tem to its limit of stability, one uses a P-controller with a gain that is about half this
value, such that the resulting overshoot (D) to a step change in the setpoint is about
30% (that is, D is about 0.3).

We here describe the procedure proposed by Shamsuzzoha and Skogestad (2010)
which seems to use the most easily available parameters from the closed-loop re-
sponse. The system should be at steady-state initially, that is, before the setpoint
change is applied. Then, from the closed-loop setpoint response one obtains the
following parameters (see Figure 4):

Kc0=1.5
Δys=1

Δyu=0.54

Δyp=0.79

tp=4.4

Δy∞

Fig. 4 Extracting information from closed-loop setpoint response with P-only controller.

• Controller gain used in experiment, Kc0
• Setpoint change, ∆ys.
• Time from setpoint change to reach first (maximum) peak, tp.
• Corresponding maximum output change, ∆yp.
• Output change at first undershoot, ∆yu.
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This seems to be the information that is most easy (and robust) to observe di-
rectly, without having to record and analyze all the data before finding the parame-
ters. Also note that one may stop the experiment already at the first undershoot.

The undershoot ∆yu is used to estimate the steady-state output change (at infinite
time)(Shamsuzzoha and Skogestad 2010),

∆y∞ = 0.45(∆yp +∆yu) (6)

Alternatively, if one has time to wait for the experiment to settle, one may record
∆y∞ instead of ∆yu.

From this information one computes the relative overshoot and the absolute value
of the relative steady-state offset, defined by:

• Overshoot, D =
∆yp−∆y∞

∆y∞
.

• Steady-state offset, B =
∣∣∣∆ys−∆y∞

∆y∞

∣∣∣.
Shamsuzzoha and Skogestad (2010) use this information to obtain directly the

PI settings. Alternatively, we may use a two-step procedure, where we first from
Kc0,D,B and tp obtain estimates for the parameters in a first-order plus delay model
(see the Appendix for details). We compute the parameters

A = 1.152D2−1.607D+1

r = 2A/B

and we obtain the following first-order plus delay model parameters from the closed-
loop setpoint response (Figure 4):

k = 1/(Kc0B) (7)

θ = tp · (0.309+0.209e−0.61r) (8)

τ1 = rθ (9)

These values may subsequently be used with any tuning method, for example, the
SIMC PI rules. The closed-loop method may also be used for an unstable process,
provided it can be approximated reasonably well by a stable first-order process. The
extension to unstable processes is the reason for taking the absolute value when
obtaining the steady-state offset B.

Example E2(Skogestad 2003). For the process

g0(s) =
(−0.3s+1)(0.08s+1)

(2s+1)(1s+1)(0.4s+1)(0.2s+1)(0.05s+1)3

the closed-loop setpoint response with P-only controller with gain Kc0 = 1.5 is
shown in Figure 4. The following data is obtained from the closed-loop response
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Kc0 = 1.5,∆ys = 1,∆yp = 0.79, tp = 4.4,∆yu = 0.54

and we compute

∆y∞ = 0.5985,D = 0.32,B = 0.67,A = 0.6038,r = 1.80

which using (7) - (9) gives the following first-order with delay model approximation,

k = 0.994,θ = 1.67,τ1 = 3.00 (10)

This gives a good approximation of the open-loop step response, as can seen by
comparing the curves for g0 and gcl in Figure 5. The approximation is certainly not
the best possible, but it should be noted that the objective is to use the model for
tuning, and the resulting difference in the tuning, and thus closed-loop response,
may be smaller than it appears by comparing the open-loop responses.

���������	
�����������
��������������������������������������������
����������������������
Fig. 5 Open-loop response to step change in input u for process E2, g0(s) =

(−0.3s+1)(0.08s+1)
(2s+1)(1s+1)(0.4s+1)(0.2s+1)(0.05s+1)3 (solid line), and comparison with various approximations.

2.3 Approximation of detailed model using half rule

Assume that we have a given detailed transfer function model in the form
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g0(s) =
∏ j(−T inv

j0 s+1)

∏i(τi0s+1)
e−θ0s (11)

where all the given parameters are positive and the time constants are ordered ac-
cording to their magnitudes. To approximate this with a first or second-order time
delay model, (3) or (4), Skogestad (2003) recommends that the “effective delay” θ

is taken as the “true” delay θ0, plus the inverse response (negative numerator) time
constant(s) T inv, plus half of the largest neglected time constant (half rule), plus all
smaller time constant τi0. The “other half” of the largest neglected time constant is
added to get at larger time constant τ1 (or τ2 for a second-order model).

Half rule: The largest neglected (denominator) time constant (lag) is dis-
tributed evenly to the effective delay (θ ) and the smallest retained time con-
stant (τ1 or τ2).

In summary, for a model in the form (11), to obtain a first-order model (3) we
use

τ1 = τ10 +
τ20

2
; θ = θ0 +

τ20

2
+∑

i≥3
τi0 +∑

j
T inv

j0 +
h
2

(12)

and, to obtain a second-order model (4), we use

τ1 = τ10; τ2 = τ20 +
τ30

2
; θ = θ0 +

τ30

2
+∑

i≥4
τi0 +∑

j
T inv

j0 +
h
2

(13)

where h is the sampling period (for cases with digital implementation).

Example E1. Using the half rule, the process

g0(s) =
1

(s+1)(0.2s+1)

is approximated as a first-order time delay process, g(s) = ke−θs+1/(τ1s+1), with
k = 1,θ = 0.2/2 = 0.1 and τ1 = 1+0.2/2 = 1.1.

Example E2 (continued). Using the half rule, the process

g0(s) =
(−0.3s+1)(0.08s+1)

(2s+1)(1s+1)(0.4s+1)(0.2s+1)(0.05s+1)3

is approximated as a first-order time delay process (3) with

τ1 = 2+1/2 = 2.5

θ = 1/2+0.4+0.2+3 ·0.05+0.3−0.08 = 1.47

or a second-order time delay process (4) with
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τ1 = 2

τ2 = 1+0.4/2 = 1.2

θ = 0.4/2+0.2+3 ·0.05+0.3−0.08 = 0.77

The small positive numerator time constant T0 = 0.08 was subtracted from the ef-
fective time delay according to rule T3 (see below). Both approximations, and in
particular the second-order model, are very good as can be seen by from the open-
loop step responses in Figure 5. Note that with the SIMC tuning rules, a first-order
model yields a PI-controller, whereas a second-order model yields a PID controller.

Comment: In this case, we have τ2 > θ(1.2 > 0.77) for the second-order model,
and the use of PID control is expected to yield a significant performance improve-
ment compared to PI control (see below for details). However, adding derivative
action has disadvantages, such as increased input usage and increased noise sensi-
tivity.

2.4 Approximation of positive numerator time constants

A process model can also contain positive numerator time constants T0 as the fol-
lowing process:

g(s) = g0(s)
T0s+1
τ0s+1

(14)

Skogestad (2003) propose to cancel out the numerator time constant T0 against a
“neighboring” lag time constant τ0 by the following rules: 1

T0s+1
τ0s+1

≈



T0/τ0 for T0 ≥ τ0 ≥ τc (Rule T1)
T0/τc for T0 ≥ τc ≥ τ0 (Rule T1a)
1 for τc ≥ T0 ≥ τ0 (Rule T1b)
T0/τ0 for τ0 ≥ T0 ≥ 5τc (Rule T2)

(τ̃0/τ0)
(τ̃0−T0)s+1 for τ̃0

def
= min(τ0,5τc)≥ T0 (Rule T3)

(15)

Here τc is the desired closed-loop time constant, which appears as the tuning
parameter in the SIMC PID rules. Because the tuning parameter is normally chosen
after obtaining the effective time delay (the recommended value for “tight control” is
τc = θ ), one may not know this value before the model is approximated. Therefore,
one may initially have to guess the value τc and iterate.

We normally select τ0 as the closest larger denominator time constant (τ0 > T0)
and use Rules T2 or T3. Note that an integrating process corresponds to a process
with an infinitely large time constant, τ0 = ∞. For example, for an integrating-pole-

1 The rules are slightly generalized compared to Skogestad (2003) by replacing θ (effective time
delay in final model) by τc (desired closed-loop time constant). This makes the rules applicable
also to cases where τc is selected to be different from θ .
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zero (IPZ) process on the form k′ e
−θs

s
T s+1
τ2s+1 , we get T s+1

s ≈ T (Rule T2 with τ0 =∞>

T ). However, if T is smaller than τ2 then we may use the approximation T s+1
τ2s+1 ≈ T

τ2
(Rule T2 with τ2 > T > 5θ ). Rule T3 would apply if T was even smaller.

However, if there exists no larger τ0, or if there is smaller denominator time
constant “close to” T0, then we select τ0 as the closest smaller denominator time
constant (τ0 < T0) and use rules T1, T1a or T1b. To define “close to” more precisely,
let τ0a (large) and τ0b (small) denote the two neighboring denominator constants to
T0. Then, we select τ0 = τ0b (small) if T0/τ0b < τ0a/T0 and T0/τ0b < 1.6 (both
conditions must be satisfied).

Derivations of the above rules and additional examples are given in (Skogestad
2003).

3 SIMC PI and PID tuning rules (step 2)

In step 2, we use the model parameters (k,θ ,τ1,τ2) to tune the PID controller. We
here derive the SIMC rules and apply them to some typical processes.

3.1 Derivation of SIMC rules

The SIMC rules may be derived using the method of direct synthesis for setpoints
(Smith and Corripio 1985), or equivalently the Internal Model Control approach for
setpoints (Rivera et al. 1986). For the system in Figure 1, the closed-loop setpoint
response is

y
ys

=
g(s)c(s)

g(s)c(s)+1
(16)

where we have assumed that the measurement of the output y is perfect. The idea
of direct synthesis is to specify the desired closed-loop response and solve for the
corresponding controller. From (16) we get

c(s) =
1

g(s)
1

1
(y/ys)desired

−1
(17)

We here consider the second-order time delay model g(s) in (4), and specify that
we, following the delay, desire a “smooth” first-order response with time constant
τc (

y
ys

)
desired

=
1

τcs+1
e−θs (18)

The delay θ is kept in the “desired” response because it is unavoidable. Substituting
(18) and (4) into (17) gives a “Smith Predictor” controller (Smith 1957):
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c(s) =
(τ1s+1)(τ2s+1)

k
1

(τcs+1− e−θs)
(19)

τc is the desired closed-loop time constant, and is the sole tuning parameter for the
controller. To derive PID settings, we introduce in (19) a first-order Taylor series
approximation of the delay, e−θs ≈ 1−θs. This gives

c(s) =
(τ1s+1)(τ2s+1)

k
1

(τc +θ)s
(20)

which is a series form PID-controller (1) with (Smith and Corripio 1985) (Rivera et
al. 1986)

Kc =
1
k

τ1

τc +θ
=

1
k′

1
τc +θ

; τI = τ1; τD = τ2 (21)

These settings are derived by considering the setpoint response. However, it is
well known that for lag dominant processes with τ1� θ (e.g. integrating processes),
the choice τI = τ1 results in a long settling time for input (“load”) disturbances
(Chien and Fruehauf 1990). To improve the load disturbance response, one may
reduce the integral time, but not by too much, because otherwise we get slow os-
cillations and robustness problems. Skogestad (2003) suggests that a good trade-off
between disturbance response and robustness is obtained by selecting the integral
time such that we just avoid the slow oscillations, which with the controller gain
given in (21) corresponds to

τI = 4(τc +θ) (22)

3.2 Summary of SIMC rules (original)

For a first-order model

g1(s) =
k

(τ1s+1)
e−θs (23)

the SIMC method results in a PI controller with settings

Kc =
1
k

τ1

τc +θ
=

1
k′

1
τc +θ

(24)

τI = min{τ1,4(τc +θ)} (25)

The desired first-order closed-loop time constant τc is the only tuning parameter.
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For a second-order model

g2(s) =
k

(τ1s+1)(τ2s+1)
e−θs (26)

the SIMC method results in a PID controller with settings (cascade form)

Kc =
1
k

τ1

τc +θ
=

1
k′

1
τc +θ

(27)

τI = min{τ1,4(τc +θ)} (28)

τD = τ2 (29)

Again, the desired first-order closed-loop time constant τc is the only tuning pa-
rameter. These PID settings are for the cascade (series) form in (1). The correspond-
ing settings for the ideal (parallel form) PID controller are easily obtained using
(30).

PID-control (with derivative action) is primarily recommended for processes
with dominant second order-dynamics, defined as having τ2 > θ , approximately.
We note that the derivative time is then selected so as to cancel the second-largest
process time constant.

In Table 1 we summarize the resulting tunings for a few special cases, including
the pure time delay process, integrating process, and double integrating process. The
double integrating process corresponds to a second-order process with τ2 = ∞ and
direct application of the rules actually yield a PD controller, so in Table 1 integral
action has been added to eliminate the offset for input disturbances.

The choice of the tuning parameter τc is discussed in more detail below. If the
objective is to have “tight control” (good output performance) subject to having
good robustness, then the recommendation is to choose τc equal to the effective
time delay, τc = θ . The same recommendation for τc applies to both PI- and PID-
control, but the actual values will differ, because the effective delay θ in a first-order
model (PI control) will be larger than that in a second-order model (PID control) of
a given process.

Example E2 (further continued). We want to derive PI- and PID-settings for the
process

g0(s) =
(−0.3s+1)(0.08s+1)

(2s+1)(1s+1)(0.4s+1)(0.2s+1)(0.05s+1)3

using the SIMC tuning rules with the “default” recommendation τc = θ . From the
closed-loop setpoint response, we obtained in a previous example a first-order model
with parameters k = 0.994,θ = 1.67,τ1 = 3.00 (10). The resulting SIMC PI-settings
with τc = θ = 1.67 are

Kc = 0.904,τI = 3
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Process g(s) Kc τI τ
(5)
D

First-order, eq.(3) k e−θs

(τ1s+1)
1
k

τ1
τc+θ

min{τ1,4(τc +θ)} -

Second-order, eq.(4) k e−θs

(τ1s+1)(τ2s+1)
1
k

τ1
τc+θ

min{τ1,4(τc +θ)} τ2

Pure time delay(1) ke−θs 0 0 (∗) -
Integrating(2) k′ e

−θs

s
1
k′ · 1

(τc+θ) 4(τc +θ) -

Integrating with lag k′ e−θs

s(τ2s+1)
1
k′ · 1

(τc+θ) 4(τc +θ) τ2

Double integrating(3) k′′ e
−θs

s2
1
k′′ · 1

4(τc+θ)2 4(τc +θ) 4(τc +θ)

IPZ process(4) k′ e
−θs

s
T s+1
τ2s+1

1
k′T ·

τ2
τc+θ

min{τ2,4(τc +θ)} -

Table 1 SIMC PID-settings (27)-(29) for some special cases of (4) (with τc as a tuning parameter).

(1) The pure time delay process is a special case of a first-order process with τ1 = 0.
(2) The integrating process is a special case of a first-order process with τ1→ ∞.
(3) For the double integrating process, integral action has been added according to eq.(22).
(4) For the integrating-pole-zero (IPZ) process we assume T > τ2. Then (T s+1)/s≈ T (rule T2)
and the PI-settings follow.
(5) The derivative time is for the cascade form PID controller in eq.(1).
(*) Pure integral controller c(s) = KI

s with KI =
Kc
τI

= 1
k(τc+θ) .

From the full-order model g0(s) and the half rule, we obtained in a previous
example a first-order model with parameters k = 1,θ = 1.47,τ1 = 2.5. The resulting
SIMC PI-settings with τc = θ = 1.47 are

Kc = 0.850,τI = 2.5

From the full-order model g0(s) and the half rule, we obtained a second-order model
with parameters k = 1,θ = 0.77,τ1 = 2,τ2 = 1.2. The resulting SIMC PID-settings
with τc = θ = 0.77 are

Cascade PID : Kc = 1.299,τI = 2,τD = 1.2

The corresponding settings with the more common ideal (parallel form) PID con-
troller are obtained by computing f = 1+ τD/τI = 1.60 and we have

Ideal PID : K′c = Kc f = 1.69,τ ′I = τI f = 3.2,τ ′D = τD/ f = 0.75 (30)

The closed-loop responses for the three controllers to a setpoint change at t = 0 and
an input (load) disturbance at t = 10 is shown in Figure 6. The responses for the two
PI controllers are very similar, as expected. The PID controller shows better output
performance (upper plot), especially for the disturbance, but it may not be sufficient
to outweigh the increased input usage (lower plot) and increased sensitivity to noise
(not shown in plot).
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Fig. 6 Closed-loop responses for process E2 using SIMC PI- and PID-tunings with τc = θ .
Setpoint change at t = 0 and input (load) disturbance at t = 10. For the PID controller, D-action is
only on the feedback signal, i.e., not on the setpoint ys.

4 Choice of tuning parameter τc

The value of the desired closed-loop time constant τc can be chosen freely, but from
(27) we must have −θ < τc < ∞ to get a positive and nonzero controller gain. The
optimal value of τc is determined by a trade-off between:

1. Output performance (tight control): Fast speed of response and good distur-
bance rejection (favored by a small value of τc). This “tightness” can be quanti-
fied by the magnitude of the setpoint error, |y(t)−ys(t)|, which should be as small
as possible. Here, one may consider different “norms” of the error, for example,
the maximum deviation (∞-norm), the integrated square deviation (2-norm) and
the integrated absolute error (IAE) (1-norm),

IAE =
∫

∞

0
|y(t)− ys(t)|dt

2. Robustness (smooth control): Good robustness, small input changes and small
noise sensitivity (favored by a large value of τc). The “smoothness” is here quan-
tified by the peak value Ms ≥ 1 of the frequency-dependent sensitivity function,
S = 1/(1+ gc). In terms of robustness, 1/Ms is the closest distance of the loop
transfer function gc to the critical (−1)-point in the Nyquist diagram, so Ms
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should be as small as possible. Notice that Ms < 1.7 guarantees gain margin
(GM)> 2.43 and phase margin (PM)> 34.2o (Rivera et al. 1986).

In general, we have a multiobjective optimization problem, so there is no value of τc
which is “optimal”. We will consider in more detail the two limiting cases of “tight”
and “smooth” control, and also consider in some detail the required input usage.

4.1 Tight control

With tight control, the primary objective is to keep the output close to its setpoint,
but there should be some minimum requirement in terms of robustness and smooth-
ness. A good trade-off is obtained by choosing τc equal to the time delay:

Tuning parameter τc. SIMC-recommendation for “tight control”, or more
precisely “tighest possible subject to maintaining smooth control”:

τc = θ (31)

The choice τc = θ gives a reasonably fast response with moderate input usage
and a good robustness with Ms about 1.6 to 1.7. More specifically, the robustness
margins with the SIMC PID-settings in (27)-(29) and τc = θ , when applied to first-
or second-order time delay processes, are always between the values given by the
two columns in Table 2. The values in the left column in Table 2 apply to a case with
a relatively small lag time constant (so τI = τ1), and the somewhat less robust values
in the right column apply to an integrating process (so τI = 4(τc + θ) = 8θ ). For
the integrating process, we reduce the integral time relative to the original value of
τI = τ1 to get better output performance for load disturbances, and not surprisingly
we have to “pay” for this in terms of less robustness.

Process g(s) k
τ1s+1 e−θs k′

s e−θs

Controller gain, Kc (τc = θ ) 0.5
k

τ1
θ

0.5
k′

1
θ

Integral time, τI τ1 8θ

Gain margin (GM) 3.14 2.96
Phase margin (PM) 61.4o 46.9o

Allowed time delay error, ∆θ/θ 2.14 1.59
Sensitivity peak, Ms 1.59 1.70
Complementary sensitivity peak, Mt 1.00 1.30
Phase crossover frequency, ω180 ·θ 1.57 1.49
Gain crossover frequency, ωc ·θ 0.50 0.51

Table 2 “Tight” settings: Robustness margins for first-order and integrating time delay process for
SIMC-rules (24)-(25) with τc = θ . The same margins apply to a second-order process (4) if we
choose τD = τ2 in (29).
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To be more specific, for processes with a relatively small time constant where
we use τI = τ1 (left column), the system always has a gain margin GM=3.14 and
phase margin PM=61.4o, which is much better than the typical minimum require-
ments GM> 1.7 and PM> 30o (Seborg et al. 1989). The sensitivity and comple-
mentary sensitivity peaks are Ms = 1.59 and Mt = 1.00 (here small values are de-
sired with a typical upper bound of 2). The maximum allowed time delay error is
∆θ/θ = PM [rad]/(wc ·θ), which in this case gives ∆θ/θ = 2.14 (i.e., the system
goes unstable if the time delay is increased from θ to (1+2.14)θ = 3.14θ ).

For an integrating processes (right column) and τI = 8θ , the suggested “tight”
settings give GM=2.96, PM=46.9o, Ms = 1.70 and Mt = 1.30, and the maximum
allowed time delay error is ∆θ = 1.59θ .
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Fig. 7 Responses using SIMC settings for the five time delay processes (τc = θ ).
Unit setpoint change at t = 0; Unit load disturbance at t = 20.
Simulations are without derivative action on the setpoint.
Parameter values: θ = 1,k = 1,k′ = 1,k′′ = 1.

The simulated time responses to setpoint changes and disturbances with SIMC-
settings are shown for five cases in Figure 7 (Skogestad 2003). Even though these
are for the “tight” settings (τc = θ ), the responses are all smooth. This means that
it is certainly possible to get even tighter responses by choosing a smaller value,
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for example τc = 0.5θ , but for most process control applications this is not recom-
mended because of less robustness, larger input usage and more sensitivity to noise.
It may seem from Figure 7 that the SIMC PID-controller does not work well for the
double integrating process (curve 4), but this is a difficult process to control and the
response to a unit input disturbance will be large for any robust controller.

4.2 Smooth control

Even though the recommended “tight” settings (τc = θ ) gives responses that are rea-
sonably smooth, they may still be unnecessary aggressive compared to the required
performance objectives, especially if the effective delay θ is small. For example, for
the limiting case with θ = 0 (no delay), we get with τc = θ an infinite controller
gain, which is clearly not realistic. Thus, in practice one often uses a ”smoother”
tuning, that is, τc > θ .

However, τc should not be too large, because otherwise the output y will go out
of bound when there are disturbances d. The question is: How slow (smooth) can
we tune the controller and still get acceptable control? This issue is addressed in
the paper by Skogestad (2006) on ”tuning for smooth PID control with acceptable
disturbance rejection”, where the following lower bound on the controller gain is
derived (for both PI- and PID-control).

Controller gain. SIMC-recommendation for “smooth control”, or more pre-
cisely “smoothest possible subject to acceptable disturbance rejection”:

|Kc|> |Kc,min|=
|∆u0|
|∆ymax|

(32)

where
∆ymax = maximum allowed deviation in the output y
∆u0 = required input change to reject the disturbance(s) d.

Substituting Kc,min into (24) or (27) one can obtain the corresponding value
τc,max, and we end up with a region of recommended values for the tuning parameter
τc:

τc,min (“tight”)< τc < τc,max (“smooth”) (33)

where
τc,min = θ , τc,max =

1
Kc,min

· τ1

k
−θ (34)

The final choice of τc is an engineering decision. A small value for τc (“tight con-
trol” of y) is typically desired for control of active constraints, because tight control
reduces the required backoff (safety margin to the constraint). On the other hand,
tight control will require larger input changes which may disturb the rest of the pro-
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cess. For example, for liquid level there is usually no reason to control the level
tightly, so a large value of τc (“smooth control”) is desired.

Details on the derivation of (32) and τc,max are given in (Skogestad 2006), but let
us here give a simplified version. Consider disturbance rejection and assume we use
a P-only controller with gain Kc. The input change (in deviation from the nominal
value) is then ∆u =−Kc∆y or

|∆u|= |Kc| · |∆y|

Assume that the required input change to reject a disturbance is ∆u0. For example,
if we have a disturbance ∆dI at the input, then ∆u0 =−∆dI . The smallest controller
gain that can generate the required input change ∆u0 is obtained when we have the
largest output change (|∆y|= |∆ymax|), and we get

|∆u0|= |Kc,min| · |∆ymax|

and (32) follows.

4.3 Input usage

The magnitude of the dynamic input change can be an important issue when tuning
the controller, that is, when selecting the value for τc. The transfer function from the
disturbance d to the input u is given by (see Figure 1):

u(s) =− gdc
1+gc

d(s)

With integral action in the controller (e.g., PI or PID control), the steady-state input
change to a step disturbance d is independent of the controller and is given by u(t =
∞) = − kd

k d where kd is the steady-state disturbance gain and k is the steady-state
process gain. We assume that we can reject the expected disturbances at steady-state,
that is, we assume |u(t = ∞)|= | kd

k d| ≤ |umax| where |umax| and |d| is the magnitude
of the disturbance change, is the maximum allowed input change, because otherwise
the process is not “controllable” (with any controller). However, the dynamic input
change u(t) will depend on the controller tuning, and we will consider the initial
change (at t = 0+) just after a step disturbance d.

We consider two important disturbances, namely an input “load” disturbance du
(corresponding to gd = g), and an output disturbance dy (corresponding to gd = 1).
Note that an output disturbance has an immediate effect on the output y. A physical
example is a process where we add another stream (output disturbance) just before
the measurement y. Mathematically, an output disturbance is equivalent to a setpoint
change (with ys =−dy)

For an input (“load”) disturbances du, input usage is not an important issue
for SIMC-tuning, even dynamically. This is because the SIMC controller gives a
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closed-loop transfer function y
ys

= gc
1+gc with little or no overshoot, see (16) and

(18), and since u
du

=− gc
1+gc , we get for du a corresponding input response with little

overshoot. This is illustrated by the input changes for a load disturbance (t = 20) in
Figure 7.

On the other hand, for an output disturbances dy (gd = 1), or equivalently for a
setpoint change ys = −dy, input usage may be an important issue for tuning. The
steady-state input change to a step setpoint change ys is u(t = ∞) = 1

k ys. However,
with PI-control the input will initially jump to the value u(t = 0+) = Kcys, as illus-
trated for the setpoint change in Figure 7 (e.g., see the first-order process, case 5).
This initial change is larger than the steady-state change if Kck > 1, which is usually
the case, except for delay-dominant processes. If we assume that the allowed input
change is umax, then to avoid input saturation we must select τc such that (SIMC PI
control):

|u(t = 0+)|= |Kcys|= |
τ1

τc +θ

1
k

ys| ≤ |umax| (35)

Note that u and ys are deviation variables. Consider, for example, a first-order pro-
cess with τ1 = 8 and θ = 1. With the choice τc = θ , the initial input change is
τ1/(τc + θ) = 4 times the steady-state input change ys/k. If such a large dynamic
input change is not feasible then one would need to use “smoother” control with a
larger value for τc in order to satisfy (35).2

With PID control, the derivative action will cause even larger input changes for
output disturbances and this may be one reason for reducing or even avoiding deriva-
tive action. It is also the reason why we to avoid “derivative kick”, recommend that
the setpoint is not differentiated, see (2).

5 Optimality of SIMC PI rules

How good are the SIMC PI rules, that is, how much room is there for improve-
ments? To study this, we compare the SIMC PI performance, with τc as a parame-
ter, to the “Pareto-optimal” PI-controller. Pareto-optimality applies to multiobjective
problems, and means that no further improvement can be made in objective 1 (out-
put performance in our case) without sacrificing objective 2 (robustness and input
usage in our case).

We choose to quantify robustness and input usage in terms of the sensitivity peak
Ms. We also considered other “robustness” measures, for example, the relative delay
margin as suggested by Foley et al. (2005), but we choose to use Ms. One reason is
that we found that the Ms-value correlates well with the input usage as given by its
total variation (TV), which agrees with the findings of Foley et al. (2005). Such a

2 It may seem from (35) that “slow” processes, which have a large time constant τ1, will always
require “slow” control (large τc) in order to avoid excessive input changes. However, this is usually
not the case because such processes often have a corresponding large gain k, such that the value
k′ = k/τ1 may be sufficiently large to satisfy (35) even with τc = θ .
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correlation is reasonable since a large Ms-value corresponds to an oscillatory system
with large input variations.

We choose to quantify performance in terms of the integrated absolute error in
response to a setpoint change (IAEys) and to an input “load” disturbance (IAEd).
The setpoint performance is often referred to as the “servo” behavior and the dis-
turbance (in this case the input “load” disturbance) performance is often referred to
as “regulator” behavior. It may be argued that a two-degree of freedom controller
(“feedforward action”) may be used to improve the response for setpoints, but note
that a setpoint change is equivalent to an output disturbance (with gd = 1 in Fig-
ure 1) which can only be counteracted by feedback. Thus, both setpoint changes
(output disturbances) and input disturbances should be included when evaluating
performance, and to get a good balance between the two, we weigh them about
equally by defining the following performance cost

J(c) = 0.5

[
IAEys(c)

IAEo
ys

+
IAEd(c)

IAEo
d

]
(36)

where the reference values, IAEo
ys and IAEo

d , are for IAE-optimal PI-controllers
(with Ms = 1.59) for a setpoint change and input disturbance, respectively. We could
have used the truly optimal IAE-value as the reference when computing J (without
the restriction Ms = 1.59), but this would not have changed the results much be-
cause the IAE-value is anyway quite close to its minimum at Ms = 1.59. Table 3
gives the tunings and reference values obtained using IAE-optimal PI-controllers
(with Ms = 1.59) for four different processes, and Table 4 gives the tunings, costs J
and Ms-values for the SIMC PI-controller (with τc = θ ). Importantly, the weighted
cost J is independent of the process gain k and the disturbance magnitude, and also
of the unit used for time. Note that two different optimal PI-controllers are used to
obtain the two reference values, whereas a single controller c is used to find IAEys(c)
and IAEd(c) when evaluating the weighted IAE-cost J(c).

Setpoint Input disturbance Optimal combined (minimize J)
Process Kc τI IAEo

ys Kc τI IAEo
d Kc τI IAEys IAEd J Ms

e−s 0.20 0.32 1.607 0.20 0.32 1.607 0.20 0.32 1.607 1.607 1 1.59
e−s

s+1 0.54 1.10 2.083 0.50 1.0 2.036 0.54 1.10 2.083 2.041 1.00 1.59
e−s

8s+1 4.0 8 2.169 3.34 3.7 1.135 3.46 4.0 3.111 1.158 1.23 1.59
e−s

s 0.50 ∞ 2.169 0.40 5.8 15.09 0.41 6.3 4.314 15.4 1.51 1.59
IAEys is for a unit setpoint change. IAEd is for a unit input disturbance.

Table 3 Optimal PI-controllers (Ms = 1.59) and corresponding IAE-values for four processes.

Figure 8 shows the trade-off between performance (J) and robustness (Ms) for
the SIMC PI-controller (blue solid curve) and the Pareto-optimal controller (dashed
black curve) for four different processes: pure time delay (τ1/θ = 0), small time
constant (τ1/θ = 1), intermediate time constant (τ1/θ = 8), and integrating process
(τ1/θ = ∞). The curve for the SIMC controller was generated by varying the tuning
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SIMC PI (τc = θ ) Improved SIMC PI (τc = θ )
Process Kc τI IAEys IAEd J Ms Kc τI IAEys IAEd J Ms

e−s 0 0 (∗) 2.17 2.17 1.35 1.59 0.17 0.33 1.95 1.95 1.21 1.45
e−s

s+1 0.5 1 2.17 2.04 1.15 1.59 0.67 1.33 1.99 1.99 1.09 1.69
e−s

8s+1 4 8 2.17 2.00 1.38 1.59 4.17 8 2.14 1.92 1.34 1.62
e−s

s 0.5 8 3.92 16 1.43 1.70 0.5 8 3.92 16 1.43 1.70
(∗) Pure integral controller with KI = Kc/τI = 0.5.

Table 4 SIMC PI-controllers (τc = θ ) and corresponding J- and Ms-values for four processes.
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Fig. 8 Check of optimality of SIMC PI tuning rules for four processes.

parameter τc from a large to a small value. The controllers corresponding to the
choices τc = 1.5θ (smoother), τc = θ (recommended) and τc = 0.5θ (aggressive)
are shown by circles. The Pareto-optimal curve was generated by finding for each
value of Ms, the optimal PI-controller c, with the smallest IAE-value J(c). Except
for the pure time delay process, the differences between the J-values for SIMC (blue
solid curve) and optimal (dashed black curve) are small (within 10%), which shows
that the SIMC PI-rules are close to optimal.

Note that we have a real trade-off between performance (J) and robustness (Ms)
only when there is a negative slope between these variables (in the left region in the
figures in Figure 8). We never want to be in the region with a zero or positive slope
(to the right in the figures), because here we can improve both performance (J) and
robustness (Ms) at the same time with another choice for the tuning parameter (using
a larger value for τc). Another important observation from Figure 8 is then that the
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SIMC-recommendation τc = θ for “tight” control (as given by middle of the three
circles) in all cases is located in the desired trade-off region with a negative slope,
well before we reach the minimum. Also, the recommended choice give a fairly
constant Ms-value in the region 1.59 to 1.7. From this we conclude that, except for
the time delay process, there is little room to improve on the SIMC PI rules, at least
when performance and robustness are as defined above (J and Ms).

The IAE-cost J in (36) is based on equal weighting of servo (output disturbance)
and regulator (input disturbance) performance. The existence of a trade-off between
servo and regulator performance, can be quantified by considering how much larger
the (Pareto) optimal cost Jopt (dashed black line) is than 1 at the reference robust-
ness, Ms = 1.59, see also Table 3. For a pure time delay-process, we have that
Jopt = 1 for Ms = 1.59 and there is no trade-off. The reason is that the setpoint
and output disturbance responses are the same. On the other hand, for the other
extreme of an integrating process, we have a clear trade off since the optimal PI-
controller has Jopt = 1.51 (the SIMC PI-controller with Ms = 1.59 is close to this
with J about 1.6). The existence of the servo/regulator trade-off for an integrating
process, implies that one for a given robustness (Ms-value) can find PI-settings with
significantly better regulator (load disturbance) performance or better servo (set-
point) performance, but not both at the same time. To be able to shift the trade-off,
one may introduce an extra parameter in the PID rules (Alcantara et al. 2010), in
addition to τc. For the SIMC method, this extra servo/regulator trade-off parameter
could be c in the following expression for the integral time,

τI = min(τ1,c(τc +θ)) (37)

where c = 4 gives the original SIMC-rule. A larger value if c improves the setpoint
performance, and a smaller value, e.g. c = 2, improves the input disturbance perfor-
mance (Haugen 2010). However, introducing an extra parameter adds complexity
and the potential benefit does not seem sufficiently large. Nevertheless, one may
consider choosing another (lower) fixed value for c. There are two reasons why we
recommend keeping the SIMC-value of c = 4. First, it is close to the Pareto-optimal
PI controller (as seen from Figure 8), so we cannot get a significant improvement
with our performance objective J. Second, with a smaller value for c, say c = 2.5,
the recommended choice τc = θ becomes less robust (with a higher Ms), so one
would need to recommend a different value for τc for an integrating process, say
τc = 1.5θ , which would add complexity. In summary, we find that the value c = 4
in the original SIMC rule provides a well-balanced servo/regulator trade-off.

6 Improved SIMC tuning rules

For a pure time delay process, we see from Figure 8 that the IAE-value (J) for the
SIMC controller is about 40% higher than the minimum with the same robustness
(Ms). This is further illustrated by the closed-loop simulations in Figure 9 where we
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see that the SIMC PI-controller (denoted SIMC-original in the figure) gives a nice
and smooth response. However, the response is somewhat sluggish initially, because
it is actually a pure I-controller (with Kc = 0,τI = 0 and KI = Kc/τI = 0.5). On the
other hand, the IAE-optimal PI-controller (with minimum J for Ms = 1.59) has Kc
about 0.2 and τI about 0.32 (and KI = 0.62). In fact, the optimal PI-controller for a
pure time delay process (dashed black line in Figure 8), has an almost fixed integral
time of approximately θ/3 for all values of Ms between 1.4 and 1.7.

Based on this fact, we propose a simple change to the SIMC-rules, namely to
replace τ1 by τ1 + θ/3 in the rules (PI control), which markedly improved the re-
sponses for a pure time delay process. It is important that the change is simple
because “simplicity” was one of the main objectives when originally deriving the
SIMC rules.

A similar change, but with θ/2 rather than θ/3, was originally proposed by
Rivera et al. (1986) for their “improved PI” tuning rule, and the effectiveness of this
modification is also clear from the paper of Foley et al. (2005). However, as seen in
Figure 9, the response with this IMC PI controller also settles rather slowly towards
the setpoint, indicating that the integral time θ/2 is too large. The proposed value
θ/3 gives a faster settling and is also closer to the original SIMC-rule (which is
zero for a time delay process). The conclusion is that we recommend to replace τ1
by τ1 +θ/3 in the SIMC rules to get the improved SIMC rules:

Improved SIMC PI-rule for first-order with delay process.

Kc =
1
k

τ1 +
θ

3
τc +θ

(38)

τI = min{τ1 +
θ

3
,4(τc +θ)} (39)

The improvement of this rule for a pure time delay processes is clear from the
red curves in Figures 9 and 8 (upper left); for small Ms-values the improved SIMC-
controller is almost identical to the Pareto-optimal, which confirms that τI = θ/3
is close to optimal for a pure time delay process. For the process with a small time
constant (τ1 = θ ), the improved SIMC rule (red curve in upper right plot in Figure 8)
is slightly better than the “original” SIMC rule (blue curve) for higher Ms-values
(where we get better performance) but slightly worse for lower Ms-values. For the
two processes with a large time constant (τ1 = 8θ and τ1 =∞) there are, as expected,
almost no difference between the original and improved SIMC rules.
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Fig. 9 Closed-loop setpoint responses for pure time delay process (θ = 1,k = 1,τ1 = 0) with PI-
control. All three controllers have the same robustness (Ms = 1.59).
For a pure time delay process, the setpoint and disturbance responses are identical, and the input
and output are identical.
IMC PI: Kc = 0.29 and τI = 0.5 (KI = Kc/τI = 0.58).
SIMC PI original (τc = θ ): Kc = 0 and τI = 0 (KI = 0.5).
SIMC PI improved (τc = 0.61θ ): Kc = 0.207 and τI = 0.333 (KI = 0.62).

7 Discussion

7.1 Measurement noise

Measurement noise has not been considered in this chapter, but it is an important
consideration in many cases, especially if the proportional gain Kc is large, or, for
cases with derivative action, if the derivative gain KcτD is large. However, since the
magnitude of the measurement noise varies a lot in applications, it is difficult to give
general rules about when measurement noise may be a problem. In general, robust
designs (with small Ms) are insensitive to measurement noise. Therefore, the SIMC
rules with the recommended choice τc = θ , are less sensitive to measurement noise
than most other published settings method, including the Ziegler-Nichols-settings. If
actual implementation shows that the sensitivity to measurement noise is too large,
then the following modifications may be attempted:

1. Filter the measurement signal, for example, by sending it through a first-order
filter 1/(τF s+ 1); see also (2). With the proposed SIMC-settings one can typi-
cally increase the filter time constant τF up to almost 0.5θ , without a large affect
on performance and robustness.
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2. If derivative action is used, one may try to remove it, and obtain a first-order
model before deriving the SIMC PI-settings.

3. If derivative action has been removed and filtering the measurement signal is not
sufficient, then the controller needs to be detuned by selecting a larger value for
τc.

7.2 Retuning for integrating processes

Integrating processes,

g(s) = k′
e−θs

s
are common in industry, but control performance is often poor because of incorrect
controller settings. When encountering oscillations, the intuition of the operators is
to reduce the controller gain. If the oscillations are relatively slow, then this is the
exactly opposite of what one should do for an integrating process. The product of
the controller gain Kc and the integral time τI must be larger than 4/k′ to avoid slow
oscillations (Skogestad 2003). One solution is to simply use proportional control
(with τI = ∞), but this is often not desirable. Here we show how to easily retune the
controller to just avoid the oscillations without actually having to derive a model.
This approach has been applied with success to industrial examples.

Consider a PI controller with (initial) settings Kc0 and τI0 which results in “slow”
oscillations with period P0 (larger than 3 ·τI0, approximately). Then we likely have a
close-to integrating process for which the product of the controller gain and integral
time (Kc0τI0) is too low. To avoid oscillations with the new settings Kc and τI we
must require (Skogestad 2003):

KcτI

Kc0τI0
≥ 1

π2 ·
(

P0

τi0

)2

(40)

Here 1/π2 ≈ 0.10, so we have the rule:

• To avoid “slow” oscillations the product of the controller gain and integral time
should be increased by a factor f ≈ 0.1(P0/τI0)

2.

7.3 Controllability

The effective delay θ is easily obtained using the proposed half rule. Since the
effective delay is the main limiting factor in terms of control performance, its value
gives invaluable insight about the inherent controllability of the process.

From the settings in (27)-(29), a PI-controller results from a first-order model,
and a PID-controller from a second-order model. With the effective delay computed
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using the half rule in (12)-(13), it then follows that PI-control performance is limited
by (half of) the magnitude of the second-largest time constant τ2, whereas PID-
control performance is limited by (half of) the magnitude of the third-largest time
constant, τ3.

8 Conclusions and Future Perspectives

This chapter has summarized the SIMC two-step procedure for deriving PID settings
for typical process control applications.

Step 1. The real process is approximated by a first-order with delay model (for
PI control) or a second-order model (for PID control). To obtain the model, the
simplest approach is probably to use an open-loop step experiment (Figure 3),
but if this is difficult for some reasons, then one may alternatively use a closed-
loop setpoint response with P-controller (Figure 4). If the starting point is a
detailed model, then the half rule may be used to obtain the effective delay θ ,
see (12)-(13).

Step 2. For a first-order model (with parameters k,τ1 and θ ) the following
SIMC PI-settings are suggested (original SIMC rule):

Kc =
1
k

τ1

τc +θ
; τI = min{τ1,4(τc +θ)}

where the closed-loop response time τc is the tuning parameter. For a dom-
inant second-order process (for which τ2 > θ , approximately), one needs to
add derivative action with

Series− form PID : τD = τ2

To improve the performance for delay-dominant processes, one may replace τ1
by τ1 +

θ

3 and use the “improved” SIMC PI-rules in (38)-(39). A more careful anal-
ysis needs to be done to check if a similar improvement can be used with a PID
controller.

Note that although the same formulas are used to obtain Kc and τI for both PI- and
PID-control, the actual values will differ since the effective delay θ is smaller for
a second-order model. The tuning parameter τc should be chosen to get the desired
trade-off between fast response (small IAE) on the one side, and smooth input usage
and robustness (small Ms) on the other side. The recommended choice τc = θ gives
robust (Ms about 1.6 to 1.7) and somewhat conservative settings when compared
with most other tuning rules, and if it is desirable to get faster control one may
consider reducing τc to about θ/2 (see Figure 8). More commonly, one may want
to have “smoother” control with τc > θ and a smaller controller gain Kc. However,



28 Sigurd Skogestad and Chriss Grimholt

the controller gain must be larger than the value given in (32) to achieve a minimum
level of disturbance rejection.

Comparing the performance of the SIMC-rules with the optimal for a given ro-
bustness (Ms value) shows that the SIMC-rules are close to the Pareto-optimal set-
tings (Figure 8). This means that the room for improving the SIMC PI-rules is lim-
ited, at least for the first-order plus delay processes considered in this chapter, and
with a good trade-off between rejecting input and output (setpoint) disturbances.

However, it should be noticed that the SIMC rules apply to processes that can
be reasonably well approximated by first or second order plus delay models. This
applies to most process control applications, including some unstable plants, but
it obviously does not apply in general, for example, for some of the unstable or
oscillating processes found in mechanical systems. For such processes, it would be
interesting to study the validity and extension of the SIMC rules or similar analytic
model-based PID tuning rules. It is also interesting to establish for which processes
the PID controller is a suitable controller and for which processes it is not.
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Appendix

Estimation of parameters τ1 and θ from closed-loop step response.
Shamsuzzoha and Skogestad (2010) discuss at the end of their paper a two-step

closed-loop procedure, where the first step is to use closed-loop data and some ex-
pressions to obtain the parameters k, τ1 and θ . We use this approach but have mod-
ified the expressions. Our expressson for k in (7) is given by their equation (35) by
noting that B = |(1− b)/b| where b = ∆y∞/∆ys. However, our expressions for θ

and τ1 in (8)-(9) differ somewhat from their equations (36) and (37). The reason
is that their equations (36) and (37) are not consistent in terms of the time delay
estimate, because the expression for τ1 in (36) is based on θ = 0.43tp, whereas (37)
uses θ = 0.305tp. To correct for this, we first note from (19) in their paper (noting
that τ1 = τI for the delay-dominant case), that τ1 and θ are related by

τ1 = rθ

where r = 2A/B, which is our expression in (9). Here, Shamsuzzoha and Skogestad
(2010) recommend to use θ = 0.44tp for τ1 < 8θ and θ = 0.305tp for τ1 > 8θ .
However, to get better accuracy and a smooth transition, we fitted simulation data
for θ/tp as a function of τ1/θ for a wide range of processes with an overshoot of
0.3, and obtained the correlation (Grimholt 2010)

θ = tp · (0.309+0.209e−0.61(τ1/θ))

as given in (8). Note here that (0.309+0.209e−0.61(τ1/θ)) is 0.518 for r = τ1/θ = 0,
and 0.309 for r = ∞.
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