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SCE1106 Control Theory

Solution Exercise 7

Task 1

a) The process model can be written as

hp(s) =
e−2s

s2 + 3s + 2
= k

e−τs

(1 + T1s)(1 + T2s)
. (1)

where k = 1
2 , τ = 2, T1 = 1 and T2 = 1

2 . The dominating (largest) time
constant in the process is therefore T1 = 1. The integral time constant is
then chosen as

Ti = T1 = 1 (2)

b) The loop transfer function, h0(s), is equal to the product of all blocks
around the feedback loop (against the signal direction), i.e.,

h0(s) = hc(s)hp(s) = Kp
1 + Tis

Tis
k

e−τs

(1 + T1s)(1 + T2s)
= k0

e−τs

s(1 + T2s)
(3)

where

k0 =
Kpk

T1
, (4)

and where we have chosen Ti = T1 in order to simplify the loop transfer
function.

The frequency response of the loop transfer function is then obtained by
putting s = jω

h0(jω) = k0
e−jτω

jω(1 + jT2ω)
(5)

We write the frequency response on polar form as follows

h0(jω) = |h0(jω)|ej 6 h0(jω) (6)

where the magnitude is given by

|h0(jω)| = k0

ω
√

1 + (T2ω)2
(7)

and where the phase shift is given by

6 h0(jω) = −τω − π

2
− arctan(T2ω) (8)
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c)

1. The phase crossover frequency, ω180, is given by the frequency, ω,
which gives a phase shift equal to −π, i.e., we have

6 h0(jω) = −τω − π

2
− arctan(T2ω) = −π (9)

This is a non-linear function in the frequency ω. The equation can
in this case simply be solved by fiks-point iteration by using the
following iteration scheme in a for loop:

ω =
π
2 − arctan(T2ω)

τ
(10)

A start value, ω = 1, gives after a few iterations that

ω180 = 0.6323 (11)

2. We will now chose the proportional constant, Kp, such that the Gain
Margin is, GM = 2. From the definition of the gain Margin we have
that

|h0(jω180)| = 1
GM

=
1
2

(12)

Putting in the expression for the magnitude given by Equation (7)
we find that

Kpk

T1ω180

√
1 + (T2ω180)2

=
1
2

(13)

which gives

Kp =
T1ω180

√
1 + (T2ω180)2

2k
= 0.6631 (14)

3. The gain crossover frequency is given by

|h0(jωc)| = k0

ωc

√
1 + (T2ωc)2

= 1 (15)

which can be solved by fiks-point iteration. Se the solution proposal.
We find the solution

ωc = 0.3272 (16)

4. The Phase Margin, PM , is then found to be:

PM = 6 h0(jωc) + π

= −τωc − π

2
− arctan(T2ωc) + π

= 0.7542 [rad] = 43.21 [◦] (17)

d) The simulation of the closed loop system with the PI controller settings
found can be done as shown in the MATLAB script losn7 ogg1.m. As
we see, there is more overshot in the output response with this settings
compared with the Skogestad settings.
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MATLAB-script losn7 oppg1.m

% losn7_oppg1.m
% Formaal: Loesning av oppgave 1 i oeving 7 i faget Prosessregulering.
% Inneholder beregning av:
% Fase kryssfrekvens, omega_180.
% Forsterkningsmargin, GM.
% Forsterkningskryssfrekvens, omega_c.
% Fasemargin, PM.
% samt PI-regulator syntese.
% DDiR, 22. oktober 2002

clear all

k=0.5; T1=1; T2=0.5; tau=2;

%% Velger Ti=1;
% Beregning av fasekryssfrekvensen, omega_180,
% ved fikspunktiterasjon.
omega=1;
for i=1:100

omega=(pi/2-atan(T2*omega))/tau;
end
omega_180=omega % Fase kryssfrekvensen.
%Test, vinkel_h0=-pi.
vinkel_h0=-tau*omega-pi/2-atan(T2*omega)

% Beregning av K_p slik at GM=2
Kp=T1*omega_180*sqrt(1+(T2*omega_180)^2)/(2*k)

% Beregning av forsterknings kryssfrekvensen, omega_c,
% vha. fikspunktiterasjon.
omega=1, k0=Kp*k/T1;
for i=1:100

omega=k0/sqrt(1+(T2*omega)^2);
end
omega_c=omega % Forsterkningskryssfrekvensen.

% Fasemarginen.
vinkel_h0=-tau*omega_c-pi/2-atan(T2*omega_c);
PM=(vinkel_h0+pi)*180/pi

%% sjekk vha control system tbx
Ti=T1;
num1=[0,0,1];
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den1=[1,3,2];
[numd,dend]=pade(tau,10);
[num_hp,den_hp]=series(num1,den1,numd,dend);

num_hc=Kp*[Ti,1];
den_hc=[Ti,0.e-9];

[num_h0,den_h0]=series(num_hc,den_hc,num_hp,den_hp);
[Gm,Pm,W180,Wc] = margin(num_h0,den_h0)
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