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Task 1 (20%): System dynamics: From response to
model

a) A pure time-delay y = hp(s)u with

with K =2 and 7 = 5.

b) An integrating plus time-delay plant y = h,(s)u with

with velocity gain approx k =2 and 7 = 5.
c) A two time constant system with inverse response y = h,(s)u with
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d) A time delay oscillating system y = hy(s)u with
ha(s) = K ——5— (4)

1882 + 26mos + 17

with relative damping & = 0.2. Should have relative damping 0 < £ < 1.



Task 2 (20%): PID control, the SIMC method

a)

b)

The SIMC method as in syllabus, the Skogestad (2003) paper and Ch. 3
lecture notes.

SIMC usually for time constant models and using the half rule for reducing
to a 1st order or a 2nd order plus time delay model.

The controller is calculated from

he(s) = 7 (5)

where the closed loop setpoint response from r to y is specified as (the
best we may achieve with fedback control if we want y=r)
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where T, is the tuning parameter, i.e. a user specified (approximate) time
constant for the closed loop system. Rule of thumb chosen as T, > 7 and
the simple choice T, = 7 is a robust lower bound.

In case of a 1st order time constant plus time delay model SIMC gives a
PI controller with settings
T

Kp = ————, T; = min(7, 4(71, T. >
»= gy T minT AT ) T2 7 (7)

In case that a PID controller is wanted tje plant model should be reduced
to a 2nd order time constant plus time delay model
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hy(s) = K T >T (8)

or a double integrator plus time delay model. The resulting SIMC con-

troller is then a PID controller on series/cascade form, i.e.,

14+ T;s
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he(s) = Ky (14 Tys) (9)

with settings as in Eqgs. (7) and with T; = T5. The PID series/cascade
form Eq. (9) may be converted to conventional ideal PID controller form.

We have
I
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d)

We obtain, by using the specified settpoint response Eq. (6)

I eTs (12)
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In SIMC the simple series approximation to the matrix exponential is
used, i.e.

el —Ts. (13)

This gives
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Further expressions depends on the plant model hy(s).

The half rule gives a 2nd order plus time delay model
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hp(s) = K

where Ty =T, T, =T + 05T = 3T, 7:= 7+ 05T + T = 7+ 3T.

SIMC gives a series/cascade PID controller as discussed in 1a).



Task 3 (25%): PID, SIMC frequency analysis

a)
b)

d)

Lecture notes Ch. 3.5

A pure I-controller
he(s) = 7~ (16)
with
Ti=k(T. + 1), (17)

where T, > 7 is a the tuning parameter (approximate time constant of
the closed loop system).

We find a P-controller h.(s) = K, with
1

K =-—— 18
p k(Tc + 7_) 9 ( )
where T, > 7 is a the tuning parameter.
The loop transfer function
kKy1+T;s _
ho(s) = he(s)hp(s) = Tiz’T@e . (19)
Theory in Ch. 3.8 and 3.8.1 We find
T‘
2 i
0 = 7. 2810 =1T. (20)
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This gives
L, 2%
K, =Y == T =97,. 21
Pk okt ! &7 (21)
Using the P-controller from 3c) gives
T; = 463(T. + 7). (22)



Task 4 (20%): PID controller

a)
b)
c)
d)

Lecture notes Ch. 4.2.2
Lecture notes Ch. 4.2.3
Lecture notes Ch. 10.4.3

Lecture notes Ch. 10.4.3 We find the the controller formulation

up = Up—1 + goek + g1ex—1 + 92(Yr — 2Up—1 + Yr—2) (23)
where
At At KT,
— K, (14 =2 = —K,(1— =22 24
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No. We do not need a model in order to use a PID controller.



Task 5 (20%): The Smith predictor

a) Lecture notes Ch. 13.2 and Figure 13.1

b) Lecture notes Ch. 13.2.1 and Eq. (13.4).

_ hchp
14 hmhe + (hp — hm)he

hr(s)

b) Lecture notes Ch. 13.2.1 and Eq. (13.3).

_ (A4 he(hy = b)) by
hals) = 1= % (hp — hum)he’ (26)



