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Task 1 (20%): System dynamics: From response to
model

a) A pure time-delay y = hp(s)u with

hp(s) = Ke−τs, (1)

with K = 2 and τ = 5.

b) An integrating plus time-delay plant y = hp(s)u with

hp(s) = k
e−τs

s
, (2)

with velocity gain approx k = 2 and τ = 5.

c) A two time constant system with inverse response y = hp(s)u with

hp(s) = K
1 + τzs

(1 + T1s)(1 + T2s)
e−τs, (3)

.

d) A time delay oscillating system y = hp(s)u with

hp(s) = K
e−τs

τ20 s
2 + 2ξτ0s+ 1

, (4)

with relative damping ξ = 0.2. Should have relative damping 0 < ξ < 1.
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Task 2 (20%): PID control, the SIMC method

a) The SIMC method as in syllabus, the Skogestad (2003) paper and Ch. 3
lecture notes.

SIMC usually for time constant models and using the half rule for reducing
to a 1st order or a 2nd order plus time delay model.

The controller is calculated from

hc(s) =
1

hp(s)

y
r

1 − y
r

(5)

where the closed loop setpoint response from r to y is specified as (the
best we may achieve with fedback control if we want y=r)

y

r
=

e−τs

1 + Tcs
, (6)

where Tc is the tuning parameter, i.e. a user specified (approximate) time
constant for the closed loop system. Rule of thumb chosen as Tc ≥ τ and
the simple choice Tc = τ is a robust lower bound.

In case of a 1st order time constant plus time delay model SIMC gives a
PI controller with settings

Kp =
T

K(Tc + τ)
, Ti = min(T, 4(Tc + τ)) Tc ≥ τ (7)

In case that a PID controller is wanted tje plant model should be reduced
to a 2nd order time constant plus time delay model

hp(s) = K
e−τs

(1 + T1s)(1 + T2s)
T1 ≥ T1 (8)

or a double integrator plus time delay model. The resulting SIMC con-
troller is then a PID controller on series/cascade form, i.e.,

hc(s) = Kp
1 + Tis

Tis
(1 + Tds) (9)

with settings as in Eqs. (7) and with Td = T2. The PID series/cascade
form Eq. (9) may be converted to conventional ideal PID controller form.

b)

We have

hvy(s) =
hv

1 + hchp
, (10)

hry(s) =
hchp

1 + hchp
. (11)
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c) We obtain, by using the specified settpoint response Eq. (6)

hc(s) =
1

hp(s)

y
r

1 − y
r

=
1

hp(s)

e−τs

1 + Tcs− e−τs
. (12)

In SIMC the simple series approximation to the matrix exponential is
used, i.e.

e−τs ≈ 1 − τs. (13)

This gives

hc(s) =
1

hp(s)

1 − τs

(Tc + τ)s
. (14)

Further expressions depends on the plant model hp(s).

d) The half rule gives a 2nd order plus time delay model

hp(s) = K
e−τs

(1 + T1s)(1 + T2s)
, (15)

where T1 = T , T2 = T + 0.5T = 3
2T , τ := τ + 0.5T + T = τ + 3

2T .

SIMC gives a series/cascade PID controller as discussed in 1a).
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Task 3 (25%): PID, SIMC frequency analysis

a) Lecture notes Ch. 3.5

b) A pure I-controller

hc(s) =
1

Tis
, (16)

with

Ti = k(Tc + τ), (17)

where Tc ≥ τ is a the tuning parameter (approximate time constant of
the closed loop system).

c) We find a P-controller hc(s) = Kp with

Kp =
1

k(Tc + τ)
, (18)

where Tc ≥ τ is a the tuning parameter.

d) The loop transfer function

h0(s) = hc(s)hp(s) =
kKp

Ti

1 + Tis

s2
e−τs. (19)

e) Theory in Ch. 3.8 and 3.8.1 We find

τ20 =
Ti
Kpk

, 2ξτ0 = Ti. (20)

This gives

Kp =
Ti
τ20 k

=
2ξ

τ0k
, Ti = 2ξτ0. (21)

Using the P-controller from 3c) gives

Ti = 4ξ2(Tc + τ). (22)
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Task 4 (20%): PID controller

a) Lecture notes Ch. 4.2.2

b) Lecture notes Ch. 4.2.3

c) Lecture notes Ch. 10.4.3

d) Lecture notes Ch. 10.4.3 We find the the controller formulation

uk = uk−1 + g0ek + g1ek−1 + g2(yk − 2yk−1 + yk−2) (23)

where

g0 = Kp(1 +
∆t

2Ti
), g1 = −Kp(1 − ∆t

2Ti
), g2 = −KpTd

∆t
. (24)

e) No. We do not need a model in order to use a PID controller.
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Task 5 (20%): The Smith predictor

a) Lecture notes Ch. 13.2 and Figure 13.1

b) Lecture notes Ch. 13.2.1 and Eq. (13.4).

hr(s) =
hchp

1 + h−mhc + (hp − hm)hc
. (25)

b) Lecture notes Ch. 13.2.1 and Eq. (13.3).

hd(s) =
(1 + hc(h

−
m − hm))hv

1 + h−mhc + (hp − hm)hc
, (26)

6


