Final Exam Course SCE1106 Control theory with implementation (theory part) Thursday January 9th 2007 kl. 9.00-12.00

December 11, 2008

Task 1 (13%): Frequency analysis

Given a feedback system as illustrated in Figure 1.

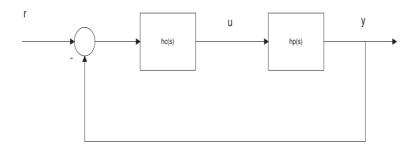


Figure 1: Standard feedback control system.

- a) Write down an expression for the loop transfer function, $h_0(s)$.
- **b)** Consider an PID controller on cascade form, $h_c(s)$, and a process, $h_p(s)$, given by

$$h_c(s) = K_p \frac{1 + T_i s}{T_i s} (1 + T_d s), \quad h_p(s) = k \frac{e^{-\tau s}}{(1 + T_1 s)(1 + T_2 s)}, \tag{1}$$

where $T_1 > T_2 > 0$. Chose the integral time T_i , and the derivative time, T_d , such that the loop transfer function can be written as follows

$$h_0(s) = k_0 \frac{e^{-\tau s}}{s}.$$
 (2)

Write also down the expression for k_0 .

c)

• Write the frequency response of the loop transfer function in (2) on polar form, i.e., such that

$$h_0(j\omega) = |h_0(j\omega)| e^{j \angle h_0(j\omega)}.$$
(3)

- What is the size $|h_0(j\omega)|$ denoted?
- What is the size $\angle h_0(j\omega)$ denoted?
- d) Find the phase crossover frequency, ω_{180} , for the system.
- e) Find a proportional gain, K_p , such that the closed loop system have a Gain Margin, $GM = \frac{3}{2}$.

- What is the definition of, and how can the gain crossover frequency, ω_c , be computed?
- What is the gain crossover frequency, ω_c , for the above feedback control system?

Task 2 (6%): Ziegler Nichols method

Consider a process, $h_p(s)$, given by

$$h_p(s) = k \frac{1 - \tau s}{s(1 + T_1 s)}.$$
(4)

where $T_1 > 0$, and a PI controller, $h_c(s)$, given by

$$h_c(s) = K_p \frac{1 + T_i s}{T_i s}.$$
(5)

We want to find the PI controller parameters K_p and T_i by using the Ziegler Nichols method.

a)

- Show how the critical gain K_{cu} for the above system can be computed, for use in the Ziegler Nichols method.
- Commenting upon the relationship between the Gain crossover frequency, ω_c , and the Phase crossover frequency, ω_{180} , when the closed loop system have the critical gain, K_{cu} .
- b) Define the PI controller parameters in the Ziegler Nichols method as a function of K_{cu} and ω_{180} .

Task 3 (8%): PID regulator

Given a PID controller in the Laplace plane

$$h_c(s) = K_p \frac{1 + T_i s}{T_i s} + K_p T_d s, \tag{6}$$

such that the control is generated by

$$u(s) = h_c(s)e(s) \tag{7}$$

where e(s) = r - y(s) is the control error. We are assuming a constant reference signal, r, in this task.

f)

- a) Write down a continuous state space model for the PID controller in Equations (6) and (7).
- b) Find a discrete time state space model for the PID controller in Step 2a) above. Use the explicit Euler method for discretization.
- c) Write the discrete time PID controller in Step 2b) above on so called incremental (deviation) form, i.e. in such a way that the control is generated by the formula

$$u_k = u_{k-1} + g_0 e_k + g_1 e_{k-1} + g_2 (y_k - 2y_{k-1} + y_{k-2}).$$
(8)

You should also write down the expressions for the parameters g_0 , g_1 and g_2 .

Task 4 (8%): Feed-forward controller and Smith predictor

Given a system described by the following transfer function model

$$y = h_u(s)u + h_v(s)v \tag{9}$$

a) Assume that the system is controlled by a controller

$$u = h_c(s)e + u_f \tag{10}$$

where h_c is the controller transfer function, e = r - y is the controller input and u_f is a feed-forward signal.

- Find the ideal feed-forward controller, i.e., find the feed-forward signal, u_f , such that the disturbance v does not influence upon the output y.
- **b)** Answer the following:
 - When may it make sense to use a Smith predictor?
 - Sketch a block diagram of a system controlled by a Smith predictor.